Формулы кислот и кислотных остатков по химии. Химические свойства кислот
Кислоты - электролиты, при диссоциации которых из положительных ионов образуются только ионы H + :
HNO 3 ↔ H + + NO 3 — ;
CH 3 COOH↔ H + +CH 3 COO — .
Все кислоты классифицируют на неорганические и органические (карбоновые), которые также имеют свои собственные (внутренние) классификации.
При нормальных условияхзначительное количество неорганических кислот существуют в жидком состоянии, некоторые - в твёрдом состоянии (H 3 PO 4 , H 3 BO 3).
Органические кислоты с числом атомов углерода до 3 представляют собой легкоподвижные бесцветные жидкости с характерным резким запахом; кислоты с 4-9 атомами углерода — маслянистые жидкости с неприятным запахом, а кислоты с большим количеством атомов углерода— твёрдые вещества, нерастворимые в воде.
Химические формулы кислот
Химические формулы кислот рассмотрим на примере нескольких представителей (как неорганических, так и органических): хлороводородной кислоте -HCl, серной кислоте - H 2 SO 4 , фосфорной кислоте — H 3 PO 4 , уксусной кислоте - CH 3 COOH и бензойной кислоте - C 6 H 5 COOH. Химическая формула показывает качественный и количественный состав молекулы (сколько и каких атомов входит в конкретное соединение) По химической формуле можно вычислить молекулярную массу кислот (Ar(H) = 1 а.е.м., Ar(Cl) = 35,5 а.е.м., Ar(P) = 31 а.е.м., Ar(O) = 16 а.е.м., Ar(S) = 32 а.е.м., Ar(C) = 12 а.е.м.):
Mr(HCl) = Ar(H) + Ar(Cl);
Mr(HCl) = 1 + 35,5 = 36,5.
Mr(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O);
Mr(H 2 SO 4) = 2×1 + 32 + 4×16 = 2 + 32 + 64 = 98.
Mr(H 3 PO 4) = 3×Ar(H) + Ar(P) + 4×Ar(O);
Mr(H 3 PO 4) = 3×1 + 31 + 4×16 = 3 + 31 + 64 = 98.
Mr(CH 3 COOH) = 3×Ar(С) + 4×Ar(H) + 2×Ar(O);
Mr(CH 3 COOH) = 3×12 + 4×1 + 2×16 = 36 + 4 + 32 = 72.
Mr(C 6 H 5 COOH) = 7×Ar(C) + 6×Ar(H) + 2×Ar(O);
Mr(C 6 H 5 COOH) = 7×12 + 6×1 + 2×16 = 84 + 6 + 32 = 122.
Структурные (графические) формулы кислот
Структурная (графическая) формула вещества является более наглядной. Она показывает то, как связаны атомы между собой внутри молекулы. Укажем структурные формулы каждого из вышеуказанных соединений:
Рис. 1. Структурная формула хлороводородной кислоты.
Рис. 2. Структурная формула серной кислоты.
Рис. 3. Структурная формула фосфорной кислоты.
Рис. 4. Структурная формула уксусной кислоты.
Рис. 5. Структурная формула бензойной кислоты.
Ионные формулы
Все неорганические кислоты являются электролитами, т.е. способны диссоциировать в водном растворе на ионы:
HCl ↔ H + + Cl — ;
H 2 SO 4 ↔ 2H + + SO 4 2- ;
H 3 PO 4 ↔ 3H + + PO 4 3- .
Примеры решения задач
ПРИМЕР 1
Задание | При полном сгорании 6 г органического вещества образовалось 8,8 г оксида углерода (IV) и 3,6 г воды. Определите молекулярную формулу сожженного вещества, если известно, что его молярная масса равна 180 г/моль. |
Решение | Составим схему реакции сгорания органического соединения обозначив количество атомов углерода, водорода и кислорода за «x», «у»и «z» соответственно:
C x H y O z + O z →CO 2 + H 2 O. Определим массы элементов, входящих в состав этого вещества. Значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел: Ar(C) = 12 а.е.м., Ar(H) = 1 а.е.м., Ar(O) = 16 а.е.м. m(C) = n(C)×M(C) = n(CO 2)×M(C) = ×M(C); m(H) = n(H)×M(H) = 2×n(H 2 O)×M(H) = ×M(H); Рассчитаем молярные массы углекислого газа и воды. Как известно, молярная масса молекулы равна сумме относительных атомных масс атомов, входящих в состав молекулы (M = Mr): M(CO 2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 г/моль; M(H 2 O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 г/моль. m(C) = ×12 = 2,4 г; m(H) = 2×3,6 / 18 ×1= 0,4 г. m(O) = m(C x H y O z) - m(C) - m(H) = 6 - 2,4 - 0,4 = 3,2 г. Определим химическую формулу соединения: x:y:z = m(C)/Ar(C) : m(H)/Ar(H) : m(O)/Ar(O); x:y:z= 2,4/12:0,4/1:3,2/16; x:y:z= 0,2: 0,4: 0,2 = 1: 2: 1. Значит простейшая формула соединения CH 2 Oи молярную массу 30 г/моль . Чтобы найти истинную формулу органического соединения найдем отношение истинной и полученной молярных масс: M substance / M(CH 2 O) = 180 / 30 = 6. Значит индексы атомов углерода, водорода и кислорода должны быть в 6 раз выше, т.е. формула вещества будет иметь вид C 6 H 12 O 6 . Это глюкоза или фруктоза. |
Ответ | C 6 H 12 O 6 |
ПРИМЕР 2
Задание | Выведите простейшую формулу соединения, в котором массовая доля фосфора составляет 43,66%, а массовая доля кислорода - 56,34%. |
Решение | Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:
ω (Х) = n × Ar (X) / M (HX) × 100%. Обозначим число атомов фосфора в молекуле через «х», а число атомов кислорода через «у» Найдем соответствующие относительные атомные массы элементов фосфора и кислорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел). Ar(P) = 31; Ar(O) = 16. Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения: x:y = ω(P)/Ar(P) : ω (O)/Ar(O); x:y = 43,66/31: 56,34/16; x:y: = 1,4: 3,5 = 1: 2,5 = 2: 5. Значит простейшая формула соединения фосфора и кислорода имеет вид P 2 O 5 . Это оксид фосфора (V). |
Ответ | P 2 O 5 |
7. Кислоты. Соли. Взаимосвязь между классами неорганических веществ
7.1. Кислоты
Кислоты - это электролиты, при диссоциации которых в качестве положительно заряженных ионов образуются только катионы водорода H + (точнее - ионы гидроксония H 3 O +).
Другое определение: кислоты - это сложные вещества, состоящие из атома водорода и кислотных остатков (табл. 7.1).
Таблица 7.1
Формулы и названия некоторых кислот, кислотных остатков и солей
Формула кислоты | Название кислоты | Кислотный остаток (анион) | Название солей (средних) |
---|---|---|---|
HF | Фтористоводородная (плавиковая) | F − | Фториды |
HCl | Хлористоводородная (соляная) | Cl − | Хлориды |
HBr | Бромистоводородная | Br − | Бромиды |
HI | Иодистоводородная | I − | Иодиды |
H 2 S | Сероводородная | S 2− | Сульфиды |
H 2 SO 3 | Сернистая | SO 3 2 − | Сульфиты |
H 2 SO 4 | Серная | SO 4 2 − | Сульфаты |
HNO 2 | Азотистая | NO 2 − | Нитриты |
HNO 3 | Азотная | NO 3 − | Нитраты |
H 2 SiO 3 | Кремниевая | SiO 3 2 − | Силикаты |
HPO 3 | Метафосфорная | PO 3 − | Метафосфаты |
H 3 PO 4 | Ортофосфорная | PO 4 3 − | Ортофосфаты (фосфаты) |
H 4 P 2 O 7 | Пирофосфорная (двуфосфорная) | P 2 O 7 4 − | Пирофосфаты (дифосфаты) |
HMnO 4 | Марганцевая | MnO 4 − | Перманганаты |
H 2 CrO 4 | Хромовая | CrO 4 2 − | Хроматы |
H 2 Cr 2 O 7 | Дихромовая | Cr 2 O 7 2 − | Дихроматы (бихроматы) |
H 2 SeO 4 | Селеновая | SeO 4 2 − | Селенаты |
H 3 BO 3 | Борная | BO 3 3 − | Ортобораты |
HClO | Хлорноватистая | ClO – | Гипохлориты |
HClO 2 | Хлористая | ClO 2 − | Хлориты |
HClO 3 | Хлорноватая | ClO 3 − | Хлораты |
HClO 4 | Хлорная | ClO 4 − | Перхлораты |
H 2 CO 3 | Угольная | CO 3 3 − | Карбонаты |
CH 3 COOH | Уксусная | CH 3 COO − | Ацетаты |
HCOOH | Муравьиная | HCOO − | Формиаты |
При обычных условиях кислоты могут быть твердыми веществами (H 3 PO 4 , H 3 BO 3 , H 2 SiO 3) и жидкостями (HNO 3 , H 2 SO 4 , CH 3 COOH). Эти кислоты могут существовать как в индивидуальном (100%-ном виде), так и в виде разбавленных и концентрированных растворов. Например, как в индивидуальном виде, так и в растворах известны H 2 SO 4 , HNO 3 , H 3 PO 4 , CH 3 COOH.
Ряд кислот известны только в растворах. Это все галогеноводородные (HCl, HBr, HI), сероводородная H 2 S, циановодородная (синильная HCN), угольная H 2 CO 3 , сернистая H 2 SO 3 кислота, которые представляют собой растворы газов в воде. Например, соляная кислота - это смесь HCl и H 2 O, угольная - смесь CO 2 и H 2 O. Понятно, что употреблять выражение «раствор соляной кислоты» неправильно.
Большинство кислот растворимы в воде, нерастворима кремниевая кислота H 2 SiO 3 . Подавляющее число кислот имеют молекулярное строение. Примеры структурных формул кислот:
В большинстве молекул кислородсодержащих кислот все атомы водорода связаны с кислородом. Но есть и исключения:
Кислоты классифицируют по ряду признаков (табл. 7.2).
Таблица 7.2
Классификация кислот
Признак классификации | Тип кислоты | Примеры |
---|---|---|
Число ионов водорода, образующихся при полной диссоциации молекулы кислоты | Одноосновные | HCl, HNO 3 , CH 3 COOH |
Двухосновные | H 2 SO 4 , H 2 S, H 2 CO 3 | |
Трехосновные | H 3 PO 4 , H 3 AsO 4 | |
Наличие или отсутствие в молекуле атома кислорода | Кислородсодержащие (кислотные гидроксиды, оксокислоты) | HNO 2 , H 2 SiO 3 , H 2 SO 4 |
Бескислородные | HF, H 2 S, HCN | |
Степень диссоциации (сила) | Сильные (полностью диссоциируют, сильные электролиты) | HCl, HBr, HI, H 2 SO 4 (разб), HNO 3 , HClO 3 , HClO 4 , HMnO 4 , H 2 Cr 2 O 7 |
Слабые (диссоциируют частично, слабые электролиты) | HF, HNO 2 , H 2 SO 3 , HCOOH, CH 3 COOH, H 2 SiO 3 , H 2 S, HCN, H 3 PO 4 , H 3 PO 3 , HClO, HClO 2 , H 2 CO 3 , H 3 BO 3 , H 2 SO 4 (конц) | |
Окислительные свойства | Окислители за счет ионов Н + (условно кислоты-неокислители) | HCl, HBr, HI, HF, H 2 SO 4 (разб), H 3 PO 4 , CH 3 COOH |
Окислители за счет аниона (кислоты-окислители) | HNO 3 , HMnO 4 , H 2 SO 4 (конц), H 2 Cr 2 O 7 | |
Восстановители за счет аниона | HCl, HBr, HI, H 2 S (но не HF) | |
Термическая устойчивость | Существуют только в растворах | H 2 CO 3 , H 2 SO 3 , HClO, HClO 2 |
Легко разлагаются при нагревании | H 2 SO 3 , HNO 3 , H 2 SiO 3 | |
Термически устойчивы | H 2 SO 4 (конц), H 3 PO 4 |
Все общие химические свойства кислот обусловлены наличием в их водных растворах избытка катионов водорода H + (H 3 O +).
1. Вследствие избытка ионов H + водные растворы кислот изменяют окраску лакмуса фиолетового и метилоранжа на красную, (фенолфталеин окраску не изменяет, остается бесцветным). В водном растворе слабой угольной кислоты лакмус не красный, а розовый, раствор над осадком очень слабой кремниевой кислоты вообще не изменяет окраску индикаторов.
2. Кислоты взаимодействуют с основными оксидами, основаниями и амфотерными гидроксидами, гидратом аммиака (см. гл. 6).
Пример 7.1. Для осуществления превращения BaO → BaSO 4 можно использовать: а) SO 2 ; б) H 2 SO 4 ; в) Na 2 SO 4 ; г) SO 3 .
Решение. Превращение можно осуществить, используя H 2 SO 4:
BaO + H 2 SO 4 = BaSO 4 ↓ + H 2 O
BaO + SO 3 = BaSO 4
Na 2 SO 4 с BaO не реагирует, а в реакции BaO с SO 2 образуется сульфит бария:
BaO + SO 2 = BaSO 3
Ответ : 3).
3. Кислоты реагируют с аммиаком и его водными растворами с образованием солей аммония:
HCl + NH 3 = NH 4 Cl - хлорид аммония;
H 2 SO 4 + 2NH 3 = (NH 4) 2 SO 4 - сульфат аммония.
4. Кислоты-неокислители с образованием соли и выделением водорода реагируют с металлами, расположенными в ряду активности до водорода:
H 2 SO 4 (разб) + Fe = FeSO 4 + H 2
2HCl + Zn = ZnCl 2 = H 2
Взаимодействие кислот-окислителей (HNO 3 , H 2 SO 4 (конц)) с металлами очень специфично и рассматривается при изучении химии элементов и их соединений.
5. Кислоты взаимодействуют с солями. Реакция имеет ряд особенностей:
а) в большинстве случаев при взаимодействии более сильной кислоты с солью более слабой кислоты образуется соль слабой кислоты и слабая кислота или, как говорят, более сильная кислота вытесняет более слабую. Ряд убывания силы кислот выглядит так:
Примеры протекающих реакций:
2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2
H 2 CO 3 + Na 2 SiO 3 = Na 2 CO 3 + H 2 SiO 3 ↓
2CH 3 COOH + K 2 CO 3 = 2CH 3 COOK + H 2 O + CO 2
3H 2 SO 4 + 2K 3 PO 4 = 3K 2 SO 4 + 2H 3 PO 4
Не взаимодействуют между собой, например, KCl и H 2 SO 4 (разб), NaNO 3 и H 2 SO 4 (разб), K 2 SO 4 и HCl (HNO 3 , HBr, HI), K 3 PO 4 и H 2 CO 3 , CH 3 COOK и H 2 CO 3 ;
б) в некоторых случаях более слабая кислота вытесняет из соли более сильную:
CuSO 4 + H 2 S = CuS↓ + H 2 SO 4
3AgNO 3 (разб) + H 3 PO 4 = Ag 3 PO 4 ↓ + 3HNO 3 .
Такие реакции возможны тогда, когда осадки полученных солей не растворяются в образующихся разбавленных сильных кислотах (H 2 SO 4 и HNO 3);
в) в случае образования осадков, нерастворимых в сильных кислотах, возможно протекание реакции между сильной кислотой и солью, образованной другой сильной кислотой:
BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl
Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ↓ + 2HNO 3
AgNO 3 + HCl = AgCl↓ + HNO 3
Пример 7.2. Укажите ряд, в котором приведены формулы веществ, которые реагируют с H 2 SO 4 (разб).
1) Zn, Al 2 O 3 , KCl (p-p); 3) NaNO 3 (p-p), Na 2 S, NaF;2) Cu(OH) 2 , K 2 CO 3 , Ag; 4) Na 2 SO 3 , Mg, Zn(OH) 2 .
Решение. С H 2 SO 4 (разб) взаимодействуют все вещества ряда 4):
Na 2 SO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + SO 2
Mg + H 2 SO 4 = MgSO 4 + H 2
Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O
В ряду 1) неосуществима реакция с KCl (p-p), в ряду 2) - с Ag, в ряду 3) - с NaNO 3 (p-p).
Ответ : 4).
6. Очень специфически в реакциях с солями ведет себя концентрированная серная кислота. Это нелетучая и термически устойчивая кислота, поэтому из твердых (!) солей вытесняет все сильные кислоты, так как они более летучие, чем H 2 SO 4 (конц):
KCl (тв) + H 2 SO 4 (конц) KHSO 4 + HCl
2KCl (тв) + H 2 SO 4 (конц) K 2 SO 4 + 2HCl
Соли, образованные сильными кислотами (HBr, HI, HCl, HNO 3 , HClO 4), реагируют только с концентрированной серной кислотой и только находясь в твердом состоянии
Пример 7.3. Концентрированная серная кислота, в отличие от разбавленной, реагирует:
3) KNO 3 (тв);
Решение. С KF, Na 2 CO 3 и Na 3 PO 4 реагируют обе кислоты, а с KNO 3 (тв) - только H 2 SO 4 (конц).
Ответ : 3).
Способы получения кислот весьма разнообразны.
Бескислородные кислоты получают:
- растворением в воде соответствующих газов:
HCl (г) + H 2 O (ж) → HCl (p-p)
H 2 S (г) + H 2 O (ж) → H 2 S (р-р)
- из солей вытеснением более сильными или менее летучими кислотами:
FeS + 2HCl = FeCl 2 + H 2 S
KCl (тв) + H 2 SO 4 (конц) = KHSO 4 + HCl
Na 2 SO 3 + H 2 SO 4 Na 2 SO 4 + H 2 SO 3
Кислородсодержащие кислоты получают:
- растворением соответствующих кислотных оксидов в воде, при этом степень окисления кислотообразующего элемента в оксиде и кислоте остается одинаковой (исключение - NO 2):
N 2 O 5 + H 2 O = 2HNO 3
SO 3 + H 2 O = H 2 SO 4
P 2 O 5 + 3H 2 O 2H 3 PO 4
- окислением неметаллов кислотами-окислителями:
S + 6HNO 3 (конц) = H 2 SO 4 + 6NO 2 + 2H 2 O
- вытеснением сильной кислоты из соли другой сильной кислоты (если выпадает нерастворимый в образующихся кислотах осадок):
Ba(NO 3) 2 + H 2 SO 4 (разб) = BaSO 4 ↓ + 2HNO 3
AgNO 3 + HCl = AgCl↓ + HNO 3
- вытеснением летучей кислоты из ее солей менее летучей кислотой.
С этой целью чаще всего используют нелетучую термически устойчивую концентрированную серную кислоту:
NaNO 3 (тв) + H 2 SO 4 (конц) NaHSO 4 + HNO 3
KClO 4 (тв) + H 2 SO 4 (конц) KHSO 4 + HClO 4
- вытеснением более слабой кислоты из ее солей более сильной кислотой:
Ca 3 (PO 4) 2 + 3H 2 SO 4 = 3CaSO 4 ↓ + 2H 3 PO 4
NaNO 2 + HCl = NaCl + HNO 2
K 2 SiO 3 + 2HBr = 2KBr + H 2 SiO 3 ↓
Классификация неорганических веществ с примерами соединений
Теперь проанализируем представленную выше классификационную схему более детально.
Как мы видим, прежде всего все неорганические вещества делятся на простые и сложные :
Простыми веществами называют такие вещества, которые образованы атомами только одного химического элемента. Например, простыми веществами являются водород H 2 , кислород O 2 , железо Fe, углерод С и т.д.
Среди простых веществ различают металлы , неметаллы и благородные газы:
Металлы образованы химическими элементами, расположенными ниже диагонали бор-астат, а также всеми элементами, находящимися в побочных группах.
Благородные газы образованы химическими элементами VIIIA группы.
Неметаллы образованы соответственно химическими элементами, расположенными выше диагонали бор-астат, за исключением всех элементов побочных подгрупп и благородных газов, расположенных в VIIIA группе:
Названия простых веществ чаще всего совпадают с названиями химических элементов, атомами которых они образованы. Однако для многих химических элементов широко распространено такое явление, как аллотропия. Аллотропией называют явление, когда один химический элемент способен образовывать несколько простых веществ. Например, в случае химического элемента кислорода возможно существование молекулярных соединений с формулами O 2 и O 3 . Первое вещество принято называть кислородом так же, как и химический элемент, атомами которого оно образовано, а второе вещество (O 3) принято называть озоном. Под простым веществом углеродом может подразумеваться любая из его аллотропных модификаций, например, алмаз, графит или фуллерены. Под простым веществом фосфором могут пониматься такие его аллотропные модификации, как белый фосфор, красный фосфор, черный фосфор.
Сложные вещества
Сложными веществами называют вещества, образованные атомами двух или более химических элементов.
Так, например, сложными веществами являются аммиак NH 3 , серная кислота H 2 SO 4 , гашеная известь Ca(OH) 2 и бесчисленное множество других.
Среди сложных неорганических веществ выделяют 5 основных классов, а именно оксиды, основания, амфотерные гидроксиды, кислоты и соли:
Оксиды — сложные вещества, образованные двумя химическими элементами, один из которых кислород в степени окисления -2.
Общая формула оксидов может быть записана как Э x O y , где Э — символ какого-либо химического элемента.
Номенклатура оксидов
Название оксида химического элемента строится по принципу:
Например:
Fe 2 O 3 — оксид железа (III); CuO — оксид меди (II); N 2 O 5 — оксид азота (V)
Нередко можно встретить информацию о том, что в скобках указывается валентность элемента, однако же это не так. Так, например, степень окисления азота N 2 O 5 равна +5, а валентность, как это ни странно, равна четырем.
В случае, если химический элемент имеет единственную положительную степень окисления в соединениях, в таком случае степень окисления не указывается. Например:
Na 2 O — оксид натрия; H 2 O — оксид водорода; ZnO — оксид цинка.
Классификация оксидов
Оксиды по их способности образовывать соли при взаимодействии с кислотами или основаниями подразделяют соответственно на солеобразующие и несолеобразующие .
Несолеобразующих оксидов немного, все они образованы неметаллами в степени окисления +1 и +2. Список несолеобразующих оксидов следует запомнить: CO, SiO, N 2 O, NO.
Солеобразующие оксиды в свою очередь подразделяются на основные , кислотные и амфотерные .
Основными оксидами называют такие оксиды, которые при взаимодействии с кислотами (или кислотными оксидами) образуют соли. К основным оксидам относят оксиды металлов в степени окисления +1 и +2, за исключением оксидов BeO, ZnO, SnO, PbO.
Кислотными оксидами называют такие оксиды, которые при взаимодействии с основаниями (или основными оксидами) образуют соли. Кислотными оксидами являются практически все оксиды неметаллов за исключением несолеобразующих CO, NO, N 2 O, SiO, а также все оксиды металлов в высоких степенях окисления (+5, +6 и +7).
Амфотерными оксидами называют оксиды, которые могут реагировать как с кислотами, так и основаниями, и в результате этих реакций образуют соли. Такие оксиды проявляют двойственную кислотно-основную природу, то есть могут проявлять свойства как кислотных, так и основных оксидов. К амфотерным оксидам относятся оксиды металлов в степенях окисления +3, +4, а также в качестве исключений оксиды BeO, ZnO, SnO, PbO.
Некоторые металлы могут образовывать все три вида солеобразующих оксидов. Например, хром образует основный оксид CrO, амфотерный оксид Cr 2 O 3 и кислотный оксид CrO 3 .
Как можно видеть, кислотно-основные свойства оксидов металлов напрямую зависят от степени окисления металла в оксиде: чем больше степень окисления, тем сильнее выражены кислотные свойства.
Основания
Основания — соединения с формулой вида Me(OH) x , где x чаще всего равен 1 или 2.
Классификация оснований
Основания классифицируют по количеству гидроксогрупп в одной структурной единице.
Основания с одной гидроксогруппой, т.е. вида MeOH, называют однокислотными основаниями, с двумя гидроксогруппами, т.е. вида Me(OH) 2 , соответственно, двухкислотными и т.д.
Также основания подразделяют на растворимые (щелочи) и нерастворимые.
К щелочам относятся исключительно гидроксиды щелочных и щелочно-земельных металлов, а также гидроксид таллия TlOH.
Номенклатура оснований
Название основания строится по нижеследующему принципу:
Например:
Fe(OH) 2 — гидроксид железа (II),
Cu(OH) 2 — гидроксид меди (II).
В тех случаях, когда металл в сложных веществах имеет постоянную степень окисления, указывать её не требуется. Например:
NaOH — гидроксид натрия,
Ca(OH) 2 — гидроксид кальция и т.д.
Кислоты
Кислоты — сложные вещества, молекулы которых содержат атомы водорода, способные замещаться на металл.
Общая формула кислот может быть записана как H x A, где H — атомы водорода, способные замещаться на металл, а A — кислотный остаток.
Например, к кислотам относятся такие соединения, как H 2 SO 4 , HCl, HNO 3 , HNO 2 и т.д.
Классификация кислот
По количеству атомов водорода, способных замещаться на металл, кислоты делятся на:
— одноосновные кислоты : HF, HCl, HBr, HI, HNO 3 ;
— двухосновные кислоты : H 2 SO 4 , H 2 SO 3 , H 2 CO 3 ;
— трехосновные кислоты : H 3 PO 4 , H 3 BO 3 .
Следует отметить, что количество атомов водорода в случае органических кислот чаще всего не отражает их основность. Например, уксусная кислота с формулой CH 3 COOH, несмотря на наличие 4-х атомов водорода в молекуле, является не четырех-, а одноосновной. Основность органических кислот определяется количеством карбоксильных групп (-COOH) в молекуле.
Также по наличию кислорода в молекулах кислоты подразделяют на бескислородные (HF, HCl, HBr и т.д.) и кислородсодержащие (H 2 SO 4 , HNO 3 , H 3 PO 4 и т.д.). Кислородсодержащие кислоты называют также оксокислотами .
Более детально про классификацию кислот можно почитать .
Номенклатура кислот и кислотных остатков
Нижеследующий список названий и формул кислот и кислотных остатков обязательно следует выучить.
В некоторых случаях облегчить запоминание может ряд следующих правил.
Как можно видеть из таблицы выше, построение систематических названий бескислородных кислот выглядит следующим образом:
Например:
HF — фтороводородная кислота;
HCl — хлороводородная кислота;
H 2 S — сероводородная кислота.
Названия кислотных остатков бескислородных кислот строятся по принципу:
Например, Cl — — хлорид, Br — — бромид.
Названия кислородсодержащих кислот получают добавлением к названию кислотообразующего элемента различных суффиксов и окончаний. Например, если кислотообразующий элемент в кислородсодержащей кислоте имеет высшую степень окисления, то название такой кислоты строится следующим образом:
Например, серная кислота H 2 S +6 O 4 , хромовая кислота H 2 Cr +6 O 4 .
Все кислородсодержащие кислоты могут быть также классифицированы как кислотные гидроксиды, поскольку в их молекулах обнаруживаются гидроксогруппы (OH). Например, это видно из нижеследующих графических формул некоторых кислородсодержащих кислот:
Таким образом, серная кислота иначе может быть названа как гидроксид серы (VI), азотная кислота — гидроксид азота (V), фосфорная кислота — гидроксид фосфора (V) и т.д. При этом число в скобках характеризует степень окисления кислотообразующего элемента. Такой вариант названий кислородсодержащих кислот многим может показаться крайне непривычным, однако же изредка такие названия можно встретить в реальных КИМах ЕГЭ по химии в заданиях на классификацию неорганических веществ.
Амфотерные гидроксиды
Амфотерные гидроксиды — гидроксиды металлов, проявляющие двойственную природу, т.е. способные проявлять как свойства кислот, так и свойства оснований.
Амфотерными являются гидроксиды металлов в степенях окисления +3 и +4 (как и оксиды).
Также в качестве исключений к амфотерным гидроксидам относят соединения Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 и Pb(OH) 2 , несмотря на степень окисления металла в них +2.
Для амфотерных гидроксидов трех- и четырехвалентных металлов возможно существование орто- и мета-форм, отличающихся друг от друга на одну молекулу воды. Например, гидроксид алюминия (III) может существовать в орто-форме Al(OH) 3 или мета-форме AlO(OH) (метагидроксид).
Поскольку, как уже было сказано, амфотерные гидроксиды проявляют как свойства кислот, так и свойства оснований, их формула и название также могут быть записаны по-разному: либо как у основания, либо как у кислоты. Например:
Соли
Так, например, к солям относятся такие соединения как KCl, Ca(NO 3) 2 , NaHCO 3 и т.д.
Представленное выше определение описывает состав большинства солей, однако же существуют соли, не попадающие под него. Например, вместо катионов металлов в состав соли могут входить катионы аммония или его органические производные. Т.е. к солям относятся такие соединения, как, например, (NH 4) 2 SO 4 (сульфат аммония), + Cl — (хлорид метиламмония) и т.д.
Классификация солей
С другой стороны, соли можно рассматривать как продукты замещения катионов водорода H + в кислоте на другие катионы или же как продукты замещения гидроксид-ионов в основаниях (или амфотерных гидроксидах) на другие анионы.
При полном замещении образуются так называемые средние или нормальные соли. Например, при полном замещении катионов водорода в серной кислоте на катионы натрия образуется средняя (нормальная) соль Na 2 SO 4 , а при полном замещении гидроксид-ионов в основании Ca(OH) 2 на кислотные остатки нитрат-ионы образуется средняя (нормальная) соль Ca(NO 3) 2 .
Соли, получаемые неполным замещением катионов водорода в двухосновной (или более) кислоте на катионы металла, называют кислыми. Так, при неполном замещении катионов водорода в серной кислоте на катионы натрия образуется кислая соль NaHSO 4 .
Соли, которые образуются при неполном замещении гидроксид-ионов в двухкислотных (или более) основаниях, называют осно вными солями. Например, при неполном замещении гидроксид-ионов в основании Ca(OH) 2 на нитрат-ионы образуется осно вная соль Ca(OH)NO 3 .
Соли, состоящие из катионов двух разных металлов и анионов кислотных остатков только одной кислоты, называют двойными солями . Так, например, двойными солями являются KNaCO 3 , KMgCl 3 и т.д.
Если соль образована одним типом катионов и двумя типами кислотных остатков, такие соли называют смешанными. Например, смешанными солями являются соединения Ca(OCl)Cl, CuBrCl и т.д.
Существуют соли, которые не попадают под определение солей как продуктов замещения катионов водорода в кислотах на катионы металлов или продуктов замещения гидроксид-ионов в основаниях на анионы кислотных остатков. Это — комплексные соли. Так, например, комплексными солями являются тетрагидроксоцинкат- и тетрагидроксоалюминат натрия с формулами Na 2 и Na соответственно. Распознать комплексные соли среди прочих чаще всего можно по наличию квадратных скобок в формуле. Однако нужно понимать, что, чтобы вещество можно было отнести к классу солей, в его состав должны входить какие-либо катионы, кроме (или вместо) H + , а из анионов должны быть какие-либо анионы помимо (или вместо) OH — . Так, например, соединение H 2 не относится к классу комплексных солей, поскольку при его диссоциации из катионов в растворе присутствуют только катионы водорода H + . По типу диссоциации данное вещество следует скорее классифицировать как бескислородную комплексную кислоту. Аналогично, к солям не относится соединение OH, т.к. данное соединение состоит из катионов + и гидроксид-ионов OH — , т.е. его следует считать комплексным основанием.
Номенклатура солей
Номенклатура средних и кислых солей
Название средних и кислых солей строится по принципу:
Если степень окисления металла в сложных веществах постоянная, то ее не указывают.
Названия кислотных остатков были даны выше при рассмотрении номенклатуры кислот.
Например,
Na 2 SO 4 — сульфат натрия;
NaHSO 4 — гидросульфат натрия;
CaCO 3 — карбонат кальция;
Ca(HCO 3) 2 — гидрокарбонат кальция и т.д.
Номенклатура основных солей
Названия основных солей строятся по принципу:
Например:
(CuOH) 2 CO 3 — гидроксокарбонат меди (II);
Fe(OH) 2 NO 3 — дигидроксонитрат железа (III).
Номенклатура комплексных солей
Номенклатура комплексных соединений значительно сложнее, и для сдачи ЕГЭ многого знать из номенклатуры комплексных солей не нужно.
Следует уметь называть комплексные соли, получаемые взаимодействием растворов щелочей с амфотерными гидроксидами. Например:
*Одинаковыми цветами в формуле и названии обозначены соответствующие друг другу элементы формулы и названия.
Тривиальные названия неорганических веществ
Под тривиальными названиями понимают названия веществ не связанные, либо слабо связанные с их составом и строением. Тривиальные названия обусловлены, как правило, либо историческими причинами либо физическими или химическими свойствами данных соединений.
Список тривиальных названий неорганических веществ, которые необходимо знать:
Na 3 | криолит |
SiO 2 | кварц, кремнезем |
FeS 2 | пирит, железный колчедан |
CaSO 4 ∙2H 2 O | гипс |
CaC2 | карбид кальция |
Al 4 C 3 | карбид алюминия |
KOH | едкое кали |
NaOH | едкий натр, каустическая сода |
H 2 O 2 | перекись водорода |
CuSO 4 ∙5H 2 O | медный купорос |
NH 4 Cl | нашатырь |
CaCO 3 | мел, мрамор, известняк |
N 2 O | веселящий газ |
NO 2 | бурый газ |
NaHCO 3 | пищевая (питьевая) сода |
Fe 3 O 4 | железная окалина |
NH 3 ∙H 2 O (NH 4 OH) | нашатырный спирт |
CO | угарный газ |
CO 2 | углекислый газ |
SiC | карборунд (карбид кремния) |
PH 3 | фосфин |
NH 3 | аммиак |
KClO 3 | бертолетова соль (хлорат калия) |
(CuOH) 2 CO 3 | малахит |
CaO | негашеная известь |
Ca(OH) 2 | гашеная известь |
прозрачный водный раствор Ca(OH) 2 | известковая вода |
взвесь твердого Ca(OH) 2 в его водном растворе | известковое молоко |
K 2 CO 3 | поташ |
Na 2 CO 3 | кальцинированная сода |
Na 2 CO 3 ∙10H 2 O | кристаллическая сода |
MgO | жженая магнезия |
Называются вещества, диссоциирующие в растворах с образованием ионов водорода.
Кислоты классифицируются по их силе, по основности и по наличию или отсутствию кислорода в составе кислоты.
По силе кислоты делятся на сильные и слабые. Важнейшие сильные кислоты - азотная HNO 3 , серная H 2 SO 4 , и соляная HCl .
По наличию кислорода различают кислородсодержащие кислоты ( HNO 3 , H 3 PO 4 и т.п.) и бескислородные кислоты ( HCl , H 2 S , HCN и т.п.).
По основности , т.е. по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли, кислоты подразделяются на одноосновные (например, HNO 3 , HCl ), двухосновные (H 2 S , H 2 SO 4 ), трехосновные (H 3 PO 4 ) и т. д.
Названия бескислородных кислот производятся от названия неметалла с прибавлением окончания -водородная: HCl - хлороводородная кислота, H 2 S е - селеноводородная кислота, HCN - циановодородная кислота.
Названия кислородсодержащих кислот также образуются от русского названия соответствующего элемента с добавлением слова «кислота». При этом название кислоты, в которой элемент находится в высшей степени окисления , оканчивается на «ная» или «овая», например, H 2 SO 4 - серная кислота, HClO 4 - хлорная кислота, H 3 AsO 4 - мышьяковая кислота. С понижением степени окисления кислотообразующего элемента окончания изменяются в следующей последовательности: «оватая» ( HClO 3 - хлорноватая кислота), «истая» ( HClO 2 - хлористая кислота), «оватистая» ( H О Cl - хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисления, то название кислоты, отвечающее низшей степени окисления элемента, получает окончание «истая» ( HNO 3 - азотная кислота, HNO 2 - азотистая кислота).
Таблица - Важнейшие кислоты и их соли
Кислота |
Названия соответствующих нормальных солей |
|
Название |
Формула |
|
Азотная |
HNO 3 |
Нитраты |
Азотистая |
HNO 2 |
Нитриты |
Борная (ортоборная) |
H 3 BO 3 |
Бораты (ортобораты) |
Бромоводородная |
Бромиды |
|
Иодоводородная |
Иодиды |
|
Кремниевая |
H 2 SiO 3 |
Силикаты |
Марганцовая |
HMnO 4 |
Перманганаты |
Метафосфорная |
HPO 3 |
Метафосфаты |
Мышьяковая |
H 3 AsO 4 |
Арсенаты |
Мышьяковистая |
H 3 AsO 3 |
Арсениты |
Ортофосфорная |
H 3 PO 4 |
Ортофосфаты (фосфаты) |
Дифосфорная (пирофосфорная) |
H 4 P 2 O 7 |
Дифосфаты (пирофосфаты) |
Дихромовая |
H 2 Cr 2 O 7 |
Дихроматы |
Серная |
H 2 SO 4 |
Сульфаты |
Сернистая |
H 2 SO 3 |
Сульфиты |
Угольная |
H 2 CO 3 |
Карбонаты |
Фосфористая |
H 3 PO 3 |
Фосфиты |
Фтороводородная (плавиковая) |
Фториды |
|
Хлороводородная (соляная) |
Хлориды |
|
Хлорная |
HClO 4 |
Перхлораты |
Хлорноватая |
HClO 3 |
Хлораты |
Хлорноватистая |
HClO |
Гипохлориты |
Хромовая |
H 2 CrO 4 |
Хроматы |
Циановодородная (синильная) |
Цианиды |
Получение кислот
1. Бескислородные кислоты могут быть получены при непосредственном соединении неметаллов с водородом:
H 2 + Cl 2 → 2HCl,
H 2 + S H 2 S.
2. Кислородсодержащие кислоты нередко могут быть получены при непосредственном соединении кислотных оксидов с водой:
SO 3 + H 2 O = H 2 SO 4 ,
CO 2 + H 2 O = H 2 CO 3 ,
P 2 O 5 + H 2 O = 2 HPO 3 .
3. Как бескислородные, так и кислородсодержащие кислоты можно получить по реакциям обмена между солями и другими кислотами:
BaBr 2 + H 2 SO 4 = BaSO 4 + 2HBr,
CuSO 4 + H 2 S = H 2 SO 4 + CuS,
CaCO 3 + 2HBr = CaBr 2 + CO 2 + H 2 O.
4. В ряде случаев для получения кислот могут быть использованы окислительно-восстановительные реакции:
H 2 O 2 + SO 2 = H 2 SO 4 ,
3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO .
Химические свойства кислот
1. Наиболее характерное химическое свойство кислот - их способность реагировать с основаниями (а также с основными и амфотерными оксидами) с образованием солей, например:
H 2 SO 4 + 2NaOH = Na 2 SO 4 + 2H 2 O,
2HNO 3 + FeO = Fe(NO 3) 2 + H 2 O,
2 HCl + ZnO = ZnCl 2 + H 2 O .
2. Способность взаимодействовать с некоторыми металлами, стоящими в ряду напряжения до водорода, с выделением водорода:
Zn + 2HCl = ZnCl 2 + H 2 ,
2Al + 6HCl = 2AlCl 3 + 3H 2 .
3. С солями, если образуется малорастворимая соль или летучее вещество:
H 2 SO 4 + BaCl 2 = BaSO 4 ↓ + 2HCl,
2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2 ,
2KHCO 3 + H 2 SO 4 = K 2 SO 4 +2SO 2 + 2H 2 O.
Заметим, что многоосновные кислоты диссоциируют ступенчато, причем легкость диссоциации по каждой из ступеней падает, поэтому для многоосновных кислот вместо средних солей часто образуются кислые (в случае избытка реагирующей кислоты):
Na 2 S + H 3 PO 4 = Na 2 HPO 4 + H 2 S ,
NaOH + H 3 PO 4 = NaH 2 PO 4 + H 2 O.
4. Частным случаем кислотно-основного взаимодействия являются реакции кислот с индикаторами, приводящие к изменению окраски, что издавна используется для качественного обнаружения кислот в растворах. Так, лакмус изменяет цвет в кислой среде на красный.
5. При нагревании кислородсодержащие кислоты разлагаются на оксид и воду (лучше в присутствии водоотнимающего P 2 O 5 ):
H 2 SO 4 = H 2 O + SO 3 ,
H 2 SiO 3 = H 2 O + SiO 2 .
М.В. Андрюxoва, Л.Н. Бopoдина