Магниты и магнитные свойства вещества. Что такое магнит? Виды и свойства магнитов


Существуют магниты двух разных видов. Одни – так называемые постоянные магниты, изготовляемые из «магнитно-твердых» материалов. Их магнитные свойства не связаны с использованием внешних источников или токов. К другому виду относятся так называемые электромагниты с сердечником из «магнитно-мягкого» железа. Создаваемые ими магнитные поля обусловлены в основном тем, что по проводу обмотки, охватывающей сердечник, проходит электрический ток.

Магнитные полюса и магнитное поле.

Магнитные свойства стержневого магнита наиболее заметны вблизи его концов. Если такой магнит подвесить за среднюю часть так, чтобы он мог свободно поворачиваться в горизонтальной плоскости, то он займет положение, примерно соответствующее направлению с севера на юг. Конец стержня, указывающий на север, называют северным полюсом, а противоположный конец – южным полюсом. Разноименные полюса двух магнитов притягиваются друг к другу, а одноименные взаимно отталкиваются.

Если к одному из полюсов магнита приблизить брусок ненамагниченного железа, то последний временно намагнитится. При этом ближний к полюсу магнита полюс намагниченного бруска будет противоположным по наименованию, а дальний – одноименным. Притяжением между полюсом магнита и индуцированным им в бруске противоположным полюсом и объясняется действие магнита. Некоторые материалы (например, сталь) сами становятся слабыми постоянными магнитами после того, как побывают около постоянного магнита или электромагнита. Стальной стержень можно намагнитить, просто проведя по его торцу концом стержневого постоянного магнита.

Итак, магнит притягивает другие магниты и предметы из магнитных материалов, не находясь в соприкосновении с ними. Такое действие на расстоянии объясняется существованием в пространстве вокруг магнита магнитного поля. Некоторое представление об интенсивности и направлении этого магнитного поля можно получить, насыпав на лист картона или стекла, положенный на магнит, железные опилки. Опилки выстроятся цепочками в направлении поля, а густота линий из опилок будет соответствовать интенсивности этого поля. (Гуще всего они у концов магнита, где интенсивность магнитного поля наибольшая.)

М.Фарадей (1791–1867) ввел для магнитов понятие замкнутых линий индукции. Линии индукции выходят в окружающее пространство из магнита у его северного полюса, входят в магнит у южного полюса и проходят внутри материала магнита от южного полюса обратно к северному, образуя замкнутую петлю. Полное число линий индукции, выходящих из магнита, называется магнитным потоком. Плотность магнитного потока, или магнитная индукция (В ), равна числу линий индукции, проходящих по нормали через элементарную площадку единичной величины.

Магнитной индукцией определяется сила, с которой магнитное поле действует на находящийся в нем проводник с током. Если проводник, по которому проходит ток I , расположен перпендикулярно линиям индукции, то по закону Ампера сила F , действующая на проводник, перпендикулярна и полю, и проводнику и пропорциональна магнитной индукции, силе тока и длине проводника. Таким образом, для магнитной индукции B можно написать выражение

где F – сила в ньютонах, I – ток в амперах, l – длина в метрах. Единицей измерения магнитной индукции является тесла (Тл) .

Гальванометр.

Гальванометр – чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна.

Намагничивающая сила и напряженность магнитного поля.

Далее следует ввести еще одну величину, характеризующую магнитное действие электрического тока. Предположим, что ток проходит по проводу длинной катушки, внутри которой расположен намагничиваемый материал. Намагничивающей силой называется произведение электрического тока в катушке на число ее витков (эта сила измеряется в амперах, так как число витков – величина безразмерная). Напряженность магнитного поля Н равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина Н измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки.

В вакууме магнитная индукция B пропорциональна напряженности магнитного поля Н :

где m 0 – т.н. магнитная постоянная, имеющая универсальное значение 4p Ч 10 –7 Гн/м. Во многих материалах величина B приблизительно пропорциональна Н . Однако в ферромагнитных материалах соотношение между B и Н несколько сложнее (о чем будет сказано ниже).

На рис. 1 изображен простой электромагнит, предназначенный для захвата грузов. Источником энергии служит аккумуляторная батарея постоянного тока. На рисунке показаны также силовые линии поля электромагнита, которые можно выявить обычным методом железных опилок.

Крупные электромагниты с железными сердечниками и очень большим числом ампер-витков, работающие в непрерывном режиме, обладают большой намагничивающей силой. Они создают магнитную индукцию до 6 Тл в промежутке между полюсами; эта индукция ограничивается лишь механическими напряжениями, нагреванием катушек и магнитным насыщением сердечника. Ряд гигантских электромагнитов (без сердечника) с водяным охлаждением, а также установок для создания импульсных магнитных полей был сконструирован П.Л.Капицей (1894–1984) в Кембридже и в Институте физических проблем АН СССР и Ф.Биттером (1902–1967) в Массачусетском технологическом институте. На таких магнитах удавалось достичь индукции до 50 Тл. Сравнительно небольшой электромагнит, создающий поля до 6,2 Тл, потребляющий электрическую мощность 15 кВт и охлаждаемый жидким водородом, был разработан в Лосаламосской национальной лаборатории. Подобные поля получают при криогенных температурах.

Магнитная проницаемость и ее роль в магнетизме.

Магнитная проницаемость m – это величина, характеризующая магнитные свойства материала. Ферромагнитные металлы Fe, Ni, Co и их сплавы обладают очень высокими максимальными проницаемостями – от 5000 (для Fe) до 800 000 (для супермаллоя). В таких материалах при сравнительно малых напряженностях поля H возникают большие индукции B , но связь между этими величинами, вообще говоря, нелинейна из-за явлений насыщения и гистерезиса, о которых говорится ниже. Ферромагнитные материалы сильно притягиваются магнитами. Они теряют свои магнитные свойства при температурах выше точки Кюри (770° С для Fe, 358° С для Ni, 1120° С для Co) и ведут себя как парамагнетики, для которых индукция B вплоть до очень высоких значений напряженности H пропорциональна ей – в точности так же, как это имеет место в вакууме. Многие элементы и соединения являются парамагнитными при всех температурах. Парамагнитные вещества характеризуются тем, что намагничиваются во внешнем магнитном поле; если же это поле выключить, парамагнетики возвращаются в ненамагниченное состояние. Намагниченность в ферромагнетиках сохраняется и после выключения внешнего поля.

На рис. 2 представлена типичная петля гистерезиса для магнитно-твердого (с большими потерями) ферромагнитного материала. Она характеризует неоднозначную зависимость намагниченности магнитоупорядоченного материала от напряженности намагничивающего поля. С увеличением напряженности магнитного поля от исходной (нулевой) точки (1 ) намагничивание идет по штриховой линии 1 2 , причем величина m существенно изменяется по мере того, как возрастает намагниченность образца. В точке 2 достигается насыщение, т.е. при дальнейшем увеличении напряженности намагниченность больше не увеличивается. Если теперь постепенно уменьшать величину H до нуля, то кривая B (H ) уже не следует по прежнему пути, а проходит через точку 3 , обнаруживая как бы «память» материала о «прошлой истории», откуда и название «гистерезис». Очевидно, что при этом сохраняется некоторая остаточная намагниченность (отрезок 1 3 ). После изменения направления намагничивающего поля на обратное кривая В (Н ) проходит точку 4 , причем отрезок (1 )–(4 ) соответствует коэрцитивной силе, препятствующей размагничиванию. Дальнейший рост значений (- H ) приводит кривую гистерезиса в третий квадрант – участок 4 5 . Следующее за этим уменьшение величины (- H ) до нуля и затем возрастание положительных значений H приведет к замыканию петли гистерезиса через точки 6 , 7 и 2 .

Магнитно-твердые материалы характеризуются широкой петлей гистерезиса, охватывающей значительную площадь на диаграмме и потому соответствующей большим значениям остаточной намагниченности (магнитной индукции) и коэрцитивной силы. Узкая петля гистерезиса (рис. 3) характерна для магнитно-мягких материалов – таких, как мягкая сталь и специальные сплавы с большой магнитной проницаемостью. Такие сплавы и были созданы с целью снижения обусловленных гистерезисом энергетических потерь. Большинство подобных специальных сплавов, как и ферриты, обладают высоким электрическим сопротивлением, благодаря чему уменьшаются не только магнитные потери, но и электрические, обусловленные вихревыми токами.

Магнитные материалы с высокой проницаемостью изготовляются путем отжига, осуществляемого выдерживанием при температуре около 1000° С, с последующим отпуском (постепенным охлаждением) до комнатной температуры. При этом очень существенны предварительная механическая и термическая обработка, а также отсутствие в образце примесей. Для сердечников трансформаторов в начале 20 в. были разработаны кремнистые стали, величина m которых возрастала с увеличением содержания кремния. Между 1915 и 1920 появились пермаллои (сплавы Ni с Fe) с характерной для них узкой и почти прямоугольной петлей гистерезиса. Особенно высокими значениями магнитной проницаемости m при малых значениях H отличаются сплавы гиперник (50% Ni, 50% Fe) и му-металл (75% Ni, 18% Fe, 5% Cu, 2% Cr), тогда как в перминваре (45% Ni, 30% Fe, 25% Co) величина m практически постоянна в широких пределах изменения напряженности поля. Среди современных магнитных материалов следует упомянуть супермаллой – сплав с наивысшей магнитной проницаемостью (в его состав входит 79% Ni, 15% Fe и 5% Mo).

Теории магнетизма.

Впервые догадка о том, что магнитные явления в конечном счете сводятся к электрическим, возникла у Ампера в 1825, когда он высказал идею замкнутых внутренних микротоков, циркулирующих в каждом атоме магнита. Однако без какого-либо опытного подтверждения наличия в веществе таких токов (электрон был открыт Дж.Томсоном лишь в 1897, а описание структуры атома было дано Резерфордом и Бором в 1913) эта теория «увяла». В 1852 В.Вебер высказал предположение, что каждый атом магнитного вещества представляет собой крошечный магнит, или магнитный диполь, так что полная намагниченность вещества достигается, когда все отдельные атомные магниты оказываются выстроенными в определенном порядке (рис. 4,б ). Вебер полагал, что сохранять свое упорядочение вопреки возмущающему влиянию тепловых колебаний этим элементарным магнитам помогает молекулярное или атомное «трение». Его теория смогла объяснить намагничивание тел при соприкосновении с магнитом, а также их размагничивание при ударе или нагреве; наконец, объяснялось и «размножение» магнитов при разрезании намагниченной иглы или магнитного стержня на части. И все же эта теория не объясняла ни происхождения самих элементарных магнитов, ни явлений насыщения и гистерезиса. Теория Вебера была усовершенствована в 1890 Дж.Эвингом, заменившим его гипотезу атомного трения идеей межатомных ограничивающих сил, помогающих поддерживать упорядочение элементарных диполей, которые составляют постоянный магнит.

Подход к проблеме, предложенный когда-то Ампером, получил вторую жизнь в 1905, когда П.Ланжевен объяснил поведение парамагнитных материалов, приписав каждому атому внутренний нескомпенсированный электронный ток. Согласно Ланжевену, именно эти токи образуют крошечные магниты, хаотически ориентированные, когда внешнее поле отсутствует, но приобретающие упорядоченную ориентацию после его приложения. При этом приближение к полной упорядоченности соответствует насыщению намагниченности. Кроме того, Ланжевен ввел понятие магнитного момента, равного для отдельного атомного магнита произведению «магнитного заряда» полюса на расстояние между полюсами. Таким образом, слабый магнетизм парамагнитных материалов обусловлен суммарным магнитным моментом, создаваемым нескомпенсированными электронными токами.

В 1907 П.Вейс ввел понятие «домена», ставшее важным вкладом в современную теорию магнетизма. Вейс представлял домены в виде небольших «колоний» атомов, в пределах которых магнитные моменты всех атомов в силу каких-то причин вынуждены сохранять одинаковую ориентацию, так что каждый домен намагничен до насыщения. Отдельный домен может иметь линейные размеры порядка 0,01 мм и соответственно объем порядка 10 –6 мм 3 . Домены разделены так называемыми блоховскими стенками, толщина которых не превышает 1000 атомных размеров. «Стенка» и два противоположно ориентированных домена схематически изображены на рис. 5. Такие стенки представляют собой «переходные слои», в которых происходит изменение направления намагниченности доменов.

В общем случае на кривой первоначального намагничивания можно выделить три участка (рис. 6). На начальном участке стенка под действием внешнего поля движется сквозь толщу вещества, пока не встретит дефект кристаллической решетки, который ее останавливает. Увеличив напряженность поля, можно заставить стенку двигаться дальше, через средний участок между штриховыми линиями. Если после этого напряженность поля вновь уменьшить до нуля, то стенки уже не вернутся в исходное положение, так что образец останется частично намагниченным. Этим объясняется гистерезис магнита. На конечном участке кривой процесс завершается насыщением намагниченности образца за счет упорядочения намагниченности внутри последних неупорядоченных доменов. Такой процесс почти полностью обратим. Магнитную твердость проявляют те материалы, у которых атомная решетка содержит много дефектов, препятствующих движению междоменных стенок. Этого можно достичь механической и термической обработкой, например путем сжатия и последующего спекания порошкообразного материала. В сплавах алнико и их аналогах тот же результат достигается путем сплавления металлов в сложную структуру.

Кроме парамагнитных и ферромагнитных материалов, существуют материалы с так называемыми антиферромагнитными и ферримагнитными свойствами. Различие между этими видами магнетизма поясняется на рис. 7. Исходя из представления о доменах, парамагнетизм можно рассматривать как явление, обусловленное наличием в материале небольших групп магнитных диполей, в которых отдельные диполи очень слабо взаимодействуют друг с другом (или вообще не взаимодействуют) и потому в отсутствие внешнего поля принимают лишь случайные ориентации (рис. 7,а ). В ферромагнитных же материалах в пределах каждого домена существует сильное взаимодействие между отдельными диполями, приводящее к их упорядоченному параллельному выстраиванию (рис. 7,б ). В антиферромагнитных материалах, напротив, взаимодействие между отдельными диполями приводит к их антипараллельному упорядоченному выстраиванию, так что полный магнитный момент каждого домена равен нулю (рис. 7,в ). Наконец, в ферримагнитных материалах (например, ферритах) имеется как параллельное, так и антипараллельное упорядочение (рис. 7,г ), итогом чего оказывается слабый магнетизм.

Имеются два убедительных экспериментальных подтверждения существования доменов. Первое из них – так называемый эффект Баркгаузена, второе – метод порошковых фигур. В 1919 Г.Баркгаузен установил, что при наложении внешнего поля на образец из ферромагнитного материала его намагниченность изменяется небольшими дискретными порциями. С точки зрения доменной теории это не что иное, как скачкообразное продвижение междоменной стенки, встречающей на своем пути отдельные задерживающие ее дефекты. Данный эффект обычно обнаруживается с помощью катушки, в которую помещается ферромагнитный стерженек или проволока. Если поочередно подносить к образцу и удалять от него сильный магнит, образец будет намагничиваться и перемагничиваться. Скачкообразные изменения намагниченности образца изменяют магнитный поток через катушку, и в ней возбуждается индукционный ток. Напряжение, возникающее при этом в катушке, усиливается и подается на вход пары акустических наушников. Щелчки, воспринимаемые через наушники, свидетельствует о скачкообразном изменении намагниченности.

Для выявления доменной структуры магнита методом порошковых фигур на хорошо отполированную поверхность намагниченного материала наносят каплю коллоидной суспензии ферромагнитного порошка (обычно Fe 3 O 4). Частицы порошка оседают в основном в местах максимальной неоднородности магнитного поля – на границах доменов. Такую структуру можно изучать под микроскопом. Был предложен также метод, основанный на прохождении поляризованного света сквозь прозрачный ферромагнитный материал.

Первоначальная теория магнетизма Вейса в своих основных чертах сохранила свое значение до настоящего времени, получив, однако, обновленную интерпретацию на основе представления о нескомпенсированных электронных спинах как факторе, определяющем атомный магнетизм. Гипотеза о существовании собственного момента у электрона была выдвинута в 1926 С.Гаудсмитом и Дж.Уленбеком, и в настоящее время в качестве «элементарных магнитов» рассматриваются именно электроны как носители спина.

Для пояснения этой концепции рассмотрим (рис. 8) свободный атом железа – типичного ферромагнитного материала. Две его оболочки (K и L ), ближайшие к ядру, заполнены электронами, причем на первой из них размещены два, а на второй – восемь электронов. В K -оболочке спин одного из электронов положителен, а другого – отрицателен. В L -оболочке (точнее, в двух ее подоболочках) у четырех из восьми электронов положительные, а у других четырех – отрицательные спины. В обоих случаях спины электронов в пределах одной оболочки полностью компенсируются, так что полный магнитный момент равен нулю. В M -оболочке ситуация иная, поскольку из шести электронов, находящихся в третьей подоболочке, пять электронов имеют спины, направленные в одну сторону, и лишь шестой – в другую. В результате остаются четыре нескомпенсированных спина, чем и обусловлены магнитные свойства атома железа. (Во внешней N -оболочке всего два валентных электрона, которые не дают вклада в магнетизм атома железа.) Сходным образом объясняется магнетизм и других ферромагнетиков, например никеля и кобальта. Поскольку соседние атомы в образце железа сильно взаимодействуют друг с другом, причем их электроны частично коллективизируются, такое объяснение следует рассматривать лишь как наглядную, но весьма упрощенную схему реальной ситуации.

Теорию атомного магнетизма, основанную на учете спина электрона, подкрепляют два интересных гиромагнитных эксперимента, один из которых был проведен А.Эйнштейном и В.де Гаазом, а другой – С.Барнеттом. В первом из этих экспериментов цилиндрик из ферромагнитного материала подвешивался так, как показано на рис. 9. Если по проводу обмотки пропустить ток, то цилиндрик поворачивается вокруг своей оси. При изменении направления тока (а следовательно, и магнитного поля) он поворачивается в обратном направлении. В обоих случаях вращение цилиндрика обусловлено упорядочением электронных спинов. В эксперименте Барнетта, наоборот, так же подвешенный цилиндрик, резко приведенный в состояние вращения, в отсутствие магнитного поля намагничивается. Этот эффект объясняется тем, что при вращении магнетика создается гироскопический момент, стремящийся повернуть спиновые моменты по направлению собственной оси вращения.

За более полным объяснением природы и происхождения короткодействующих сил, упорядочивающих соседние атомные магнитики и противодействующих разупорядочивающему влиянию теплового движения, следует обратиться к квантовой механике. Квантово-механическое объяснение природы этих сил было предложено в 1928 В.Гейзенбергом, который постулировал существование обменных взаимодействий между соседними атомами. Позднее Г.Бете и Дж.Слэтер показали, что обменные силы существенно возрастают с уменьшением расстояния между атомами, но по достижении некоторого минимального межатомного расстояния падают до нуля.

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА

Одно из первых обширных и систематических исследований магнитных свойств вещества было предпринято П.Кюри. Он установил, что по своим магнитным свойствам все вещества можно разделить на три класса. К первому относятся вещества с резко выраженными магнитными свойствами, подобными свойствам железа. Такие вещества называются ферромагнитными; их магнитное поле заметно на значительных расстояниях (см . выше ). Во второй класс попадают вещества, называемые парамагнитными; магнитные свойства их в общем аналогичны свойствам ферромагнитных материалов, но гораздо слабее. Например, сила притяжения к полюсам мощного электромагнита может вырвать из ваших рук железный молоток, а чтобы обнаружить притяжение парамагнитного вещества к тому же магниту, нужны, как правило, очень чувствительные аналитические весы. К последнему, третьему классу относятся так называемые диамагнитные вещества. Они отталкиваются электромагнитом, т.е. сила, действующая на диамагнетики, направлена противоположно той, что действует на ферро- и парамагнетики.

Измерение магнитных свойств.

При изучении магнитных свойств наиболее важное значение имеют измерения двух типов. Первый из них –измерения силы, действующей на образец вблизи магнита; так определяется намагниченность образца. Ко второму относятся измерения «резонансных» частот, связанных с намагничением вещества. Атомы представляют собой крошечные «гироскопы» и в магнитном поле прецессируют (как обычный волчок под влиянием вращающего момента, создаваемого силой тяжести) с частотой, которая может быть измерена. Кроме того, на свободные заряженные частицы, движущиеся под прямым углом к линиям магнитной индукции, действует сила, как и на электронный ток в проводнике. Она заставляет частицу двигаться по круговой орбите, радиус которой дается выражением

R = mv /eB ,

где m – масса частицы, v – ее скорость, e – ее заряд, а B – магнитная индукция поля. Частота такого кругового движения равна

где f измеряется в герцах, e – в кулонах, m – в килограммах, B – в теслах. Эта частота характеризует движение заряженных частиц в веществе, находящемся в магнитном поле. Оба типа движений (прецессию и движение по круговым орбитам) можно возбудить переменными полями с резонансными частотами, равными «естественным» частотам, характерным для данного материала. В первом случае резонанс называется магнитным, а во втором – циклотронным (ввиду сходства с циклическим движением субатомной частицы в циклотроне).

Говоря о магнитных свойствах атомов, необходимо особо остановиться на их моменте импульса. Магнитное поле действует на вращающийся атомный диполь, стремясь повернуть его и установить параллельно полю. Вместо этого атом начинает прецессировать вокруг направления поля (рис. 10) с частотой, зависящей от дипольного момента и напряженности приложенного поля.

Прецессия атомов не поддается непосредственному наблюдению, поскольку все атомы образца прецессируют в разной фазе. Если же приложить небольшое переменное поле, направленное перпендикулярно постоянному упорядочивающему полю, то между прецессирующими атомами устанавливается определенное фазовое соотношение и их суммарный магнитный момент начинает прецессировать с частотой, равной частоте прецессии отдельных магнитных моментов. Важное значение имеет угловая скорость прецессии. Как правило, это величина порядка 10 10 Гц/Тл для намагниченности, связанной с электронами, и порядка 10 7 Гц/Тл для намагниченности, связанной с положительными зарядами в ядрах атомов.

Принципиальная схема установки для наблюдения ядерного магнитного резонанса (ЯМР) представлена на рис. 11. В однородное постоянное поле между полюсами вводится изучаемое вещество. Если затем с помощью небольшой катушки, охватывающей пробирку, возбудить радиочастотное поле, то можно добиться резонанса на определенной частоте, равной частоте прецессии всех ядерных «гироскопов» образца. Измерения сходны с настройкой радиоприемника на частоту определенной станции.

Методы магнитного резонанса позволяют исследовать не только магнитные свойства конкретных атомов и ядер, но и свойства их окружения. Дело в том, что магнитные поля в твердых телах и молекулах неоднородны, поскольку искажены атомными зарядами, и детали хода экспериментальной резонансной кривой определяются локальным полем в области расположения прецессирующего ядра. Это и дает возможность изучать особенности структуры конкретного образца резонансными методами.

Расчет магнитных свойств.

Магнитная индукция поля Земли составляет 0,5Ч 10 –4 Тл, тогда как поле между полюсами сильного электромагнита – порядка 2 Тл и более.

Магнитное поле, создаваемое какой-либо конфигурацией токов, можно вычислить, пользуясь формулой Био – Савара – Лапласа для магнитной индукции поля, создаваемого элементом тока. Расчет поля, создаваемого контурами разной формы и цилиндрическими катушками, во многих случаях весьма сложен. Ниже приводятся формулы для ряда простых случаев. Магнитная индукция (в теслах) поля, создаваемого длинным прямым проводом с током I

Поле намагниченного железного стержня сходно с внешним полем длинного соленоида с числом ампер-витков на единицу длины, соответствующим току в атомах на поверхности намагниченного стержня, поскольку токи внутри стержня взаимно компенсируются (рис. 12). По имени Ампера такой поверхностный ток называется амперовским. Напряженность магнитного поля H a , создаваемая амперовским током, равна магнитному моменту единицы объема стержня M .

Если в соленоид вставлен железный стержень, то кроме того, что ток соленоида создает магнитное поле H , упорядочение атомных диполей в намагниченном материале стержня создает намагниченность M . В этом случае полный магнитный поток определяется суммой реального и амперовского токов, так что B = m 0(H + H a ), или B = m 0(H + M ). Отношение M /H называется магнитной восприимчивостью и обозначается греческой буквой c ; c – безразмерная величина, характеризующая способность материала намагничиваться в магнитном поле.

Величина B /H , характеризующая магнитные свойства материала, называется магнитной проницаемостью и обозначается через m a , причем m a = m 0m , где m a – абсолютная, а m – относительная проницаемости,

В ферромагнитных веществах величина c может иметь очень большие значения –до 10 4 ё 10 6 . Величина c у парамагнитных материалов немного больше нуля, а у диамагнитных – немного меньше. Лишь в вакууме и в очень слабых полях величины c и m постоянны и не зависят от внешнего поля. Зависимость индукции B от H обычно нелинейна, а ее графики, т.н. кривые намагничивания, для разных материалов и даже при разных температурах могут существенно различаться (примеры таких кривых приведены на рис. 2 и 3).

Магнитные свойства вещества весьма сложны, и для их глубокого понимания необходим тщательный анализ строения атомов, их взаимодействий в молекулах, их столкновений в газах и их взаимного влияния в твердых телах и жидкостях; магнитные свойства жидкостей пока наименее изучены.

Еще в древние времена люди обнаружили уникальные свойства определенных камней - притягивание металла. В наше время мы часто сталкиваемся с предметами, которые обладают этими качествами. Что такое магнит? В чем его сила? Об этом мы расскажем в этой статье.

Примером временного магнита являются скрепки, кнопки, гвозди, нож и другие предметы обихода, изготовленные из железа. Их сила в том, что они притягиваются к постоянному магниту, а при исчезновении магнитного поля, теряют свое свойство.

Полем электромагнита можно управлять с помощью электрического тока. Как это происходит ? Провод, витками намотанный на железный сердечник, при подаче и изменении величины тока меняет силу магнитного поля и его полярность.

Типы постоянных магнитов

Ферритовые магниты являются самыми известными и активно используемыми в быту. Этот материал черного цвета может использоваться в качестве крепежей различных предметов, например, для плакатов, для настенных досок, используемых в офисе или школе. Они не теряют своих свойств притяжения при температуре не ниже 250 о С.

Альнико - магнит, состоящий из сплава алюминия, никеля и кобальта. Это дало ему такое название. Очень устойчив к высоким температурам и может применяться при 550 о С. Материал отличается легкостью, но полностью теряет свои свойства, попадая под действие более сильного магнитного поля. Используется в основном в научной отрасли.

Самариевые магнитные сплавы - это материал с высокими показателями. Надежность его свойств позволяет использовать материал в военных разработках. Он устойчив к агрессивной среде, высокой температуре, окислению и коррозии.

Что такое неодимовый магнит? Это самый популярный сплав железа, бора и неодима. Его еще называют супермагнитом, так как он имеет мощнейшее магнитное поле с высокой коэрцитивной силой. Соблюдая определенные условия во время эксплуатации, неодимовый магнит способен сохранить свои свойства на протяжении 100 лет.

Использование неодимовых магнитов

Стоит подробно рассмотреть, что такое неодимовый магнит? Это материал, который способен фиксировать потребление воды, электричества и газа в счетчиках, да и не только. Этот вид магнита относится к постоянным и редкоземельным материалам. Он устойчив перед полей других сплавов и не подвержен размагничиванию.

Изделия из неодима используют в медицинских и промышленных отраслях. Также в бытовых условиях их применяют для крепления портьер, элементов декора, сувениров. Они применяются в поисковых приборах и в электронике.

Для продления срока службы магниты такого типа покрывают цинком или никелем. В первом случае напыление более надежное, так как устойчиво к агрессивным средствам и выдерживает температуру выше 100 о С. Сила магнита зависит от его формы, размера и количества неодима, входящего в состав сплава.

Применение ферритовых магнитов

Ферриты считаются самыми популярными магнитами среди постоянных видов. Благодаря стронцию, входящему в состав, материал не поддается коррозии. Так что это такое - ферритовый магнит? Где он применяется? Этот сплав довольно хрупок. Поэтому его еще называют керамическим. Применяется ферритовый магнит в автомобилестроении и промышленности. Используется в различной технике и электроприборах, а также бытовых установках, генераторах, системах акустики. При производстве автомобилей магниты используют в системах охлаждения, стеклоподъемниках и вентиляторах.

Назначение феррита - защитить технику от внешних помех и не допустить порчи сигнала, получаемого по кабелю. Благодаря этому используют при производстве навигаторов, мониторов, принтеров и другого оборудования, где важно получить чистый сигнал или изображение.

Магнитотерапия

Нередко применяется процедура называется магнитотерапия и проводится в лечебных целях. Действие этого метода заключается в том, чтобы повлиять на организм пациента с помощью магнитных полей, находящихся под низкочастотным переменным или постоянным током. Этот метод лечения помогает избавиться от многих заболеваний, снять боли, укрепить иммунную систему, улучшить кровоток.

Считается, что болезни порождаются нарушением магнитного поля человека. Благодаря физиотерапии организм приходит в норму и общее состояние улучшается.

Из данной статьи вы узнали, что такое магнит, а также изучили его свойства и сферы применения.


Благодаря появлению сплава на основе Nd -Fe -B (неодима, железа и бора) применение магнитов в промышленности было существенно расширено. Среди ключевых преимуществ этого редкоземельного магнита по сравнению с используемыми ранее SmCo и Fe-P особенно стоит отметить его доступность. Сочетая высокую силу сцепления с компактными размерами и длительным сроком службы, такие изделия стали востребованы в самых разных сферах хозяйственной деятельности.


Использование неодимовых магнитов в различных промышленных отраслях


Ограничения при использовании редкоземельных магнитов на основе неодима связаны с их слабостью к перегреву. Верхний показатель рабочей температуры для стандартных изделий составляет +80⁰C , а для модифицированных термостойких сплавов - +200⁰C . С учетом этой особенности применение неодимовых магнитов в промышленности охватывает следующие сферы:


1) Компьютерная техника. Значительная часть от общего объема магнитной продукции используются в производстве DVD -приводов и винчестеров для ПК. Пластина из неодимового сплава используется в конструкции головки чтения/записи. Неодимовый магнит – неотъемлемая часть динамиков в смартфонах и планшетах. Для защиты от размагничивания из-за воздействия внешних полей этот элемент закрывают с помощью специальных экранирующих материалов.


2) Медицина. Компактные и мощные постоянные магниты находят свое применение при изготовлении приборов для магнитно-резонансной томографии. Такие устройства оказываются значительно экономичнее и надежнее по сравнению с устройствами, в которых установлены электромагниты.


3) Строительство. На строительных площадках различного уровня используются практичные и удобные магнитные фиксаторы, которые успешно вытесняют сварные формы. С помощью магнитов подготавливают воду для замешивания цементного раствора. Благодаря особым свойствам омагниченной жидкости получаемый бетон быстрее застывает, обладая при этом повышенной прочностью.


4) Транспорт. Редкоземельные магниты незаменимы при производстве современных электродвигателей, роторов и турбин. Появление неодимового сплава обеспечило снижение стоимости оборудования при улучшении его эксплуатационных свойств. В частности, мощные и в то же время компактные постоянные магниты позволили уменьшить габариты электродвигателей, снизить силу трения и увеличить КПД.


5) Нефтепереработка. Магниты устанавливают на трубопроводные системы, что позволяет защитить их от образования осадка органических и неорганических отложений. Благодаря такому эффекту появилась возможность создать более экономичные и не вредящие окружающей среде системы с замкнутым технологическим циклом.


6) Сепараторы и железоотделители. На многих производственных предприятиях необходимо обеспечить отсутствие металлических примесей в жидких или сыпучих материалах. Неодимовые магниты позволяют с минимальными затратами и максимальной эффективностью справиться с этой задачей. Это позволяет не допустить попадания металлических загрязнений в готовую продукцию и защитить промышленное оборудование от поломок.

4. Применение магнитов в разных сферах деятельности современного общества

Основное применение магнит находит в электротехнике, радиотехнике, приборостроении, автоматике и телемеханике. Здесь ферромагнитные материалы идут на изготовление магнитопроводов, реле и т.д. .

Электромашинные генераторы и электродвигатели - машины вращательного типа, преобразующие либо механическую энергию в электрическую (генераторы), либо электрическую в механическую (двигатели). Действие генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действие электродвигателей основано на том, что на провод с током, помещенный в поперечное магнитное поле, действует сила.

Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю.

Индукционные счетчики электроэнергии. Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности.

Электрические наручные часы питаются миниатюрной батарейкой. Для их работы требуется гораздо меньше деталей, чем в механических часах; так, в схему типичных электрических портативных часов входят два магнита, две катушки индуктивности и транзистор.

Динамометр - механический или электрический прибор для измерения силы тяги или крутящего момента машины, станка или двигателя.

Тормозные динамометры бывают самых различных конструкций; к ним относятся, например, тормоз Прони, гидравлический и электромагнитный тормоза .

Электромагнитный динамометр может быть выполнен в виде миниатюрного прибора, пригодного для измерений характеристик малогабаритных двигателей.

Гальванометр – чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна. Приборы на его базе - самый распространенный вид приборов .

Магнитные свойства вещества находят широкое применение в науке и технике как средство изучения структуры различных тел. Так возникли науки:

Магнитохимия - раздел физической химии, в котором изучается связь между магнитными и химическими свойствами веществ; кроме того, магнитохимия исследует влияние магнитных полей на химические процессы. магнитохимия опирается на современную физику магнитных явлений. Изучение связи между магнитными и химическими свойствами позволяет выяснить особенности химического строения вещества.

Магнитная дефектоскопия, метод поиска дефектов, основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов.

Ускоритель частиц, установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию.

В современных ускорителях используются многочисленные и разнообразные виды техники, в т.ч. мощные прецизионные магниты.

В медицинской терапии и диагностике у скорители играют важную практическую роль. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным .

Представители различных наук учитывают магнитные поля в своих исследованиях. Физик измеряет магнитные поля атомов и элементарных частиц, астроном изучает роль космических полей в процессе формирования новых звёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитных руд, с недавнего времени биология тоже активно включилась в изучение и использование магнитов.

Биологическая наука первой половины XX века уверенно описывала жизненные функции, вовсе не учитывая существования каких-либо магнитных полей. Более того, некоторые биологи считали нужным подчеркнуть, что даже сильное искусственное магнитное поле не оказывает никакого влияния на биологические объекты.

В энциклопедиях о влиянии магнитных полей на биологические процессы ничего не говорилось. В научной литературе всего мира ежегодно появлялись единичные позитивные соображения о том или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёк не мог растопить айсберг недоверия даже к постановке самой проблемы… И вдруг ручеёк превратился в бурный поток. Лавина магнитобиологических публикаций, словно сорвавшись с какой – то вершины, с начала 60 – х годов непрестанно увеличивается и заглушает скептические высказывания.

От алхимиков XVI века и до наших дней биологическое действие магнита много раз находило поклонников и критиков. Неоднократно в течение нескольких веков наблюдались всплески и спады интереса к лечебному действию магнита. С его помощью пытались лечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли в печени и в желудке – сотни болезней .

Для лечебных целей магнит стал употребляться, вероятно, раньше, чем для определения сторон света.

Как местное наружное средство и в качестве амулета магнит пользовался большим успехом у китайцев, индусов, египтян, арабов, греков, римлян и т.д. О его лечебных свойствах упоминают в своих трудах философ Аристотель и историк Плиний.

Во второй половине XX века широко распространились магнитные браслеты, благотворно влияющие на больных с нарушением кровяного давления (гипертония и гипотония).

Кроме постоянных магнитов используются и электромагниты. Их также применяют для широкого спектра проблем в науке, технике, электронике, медицине (нервные заболевания, заболевания сосудов конечностей, сердечно – сосудистые заболевания, раковые заболевания).

Более всего учёные склоняются к мысли, что магнитные поля повышают сопротивляемость организма.

Существуют электромагнитные измерители скорости движения крови, миниатюрные капсулы, которые с помощью внешних магнитных полей можно перемещать по кровеносным сосудам чтобы расширять их, брать пробы на определённых участках пути или, наоборот, локально выводить из капсул различные медикаменты.

Широко распространён магнитный метод удаления металлических частиц из глаза.

Большинству из нас известно исследование работы сердца с помощью электрических датчиков – электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создают магнитное поле сердца, которое в max значениях составляет 10-6 напряжённости магнитного поля Земли. Ценность магнитокардиографии в том, что она позволяет получить сведения об электрически “немых” областях сердца.

Надо отметить, что биологи сейчас просят физиков дать теорию первичного механизма биологического действия магнитного поля, а физики в ответ требуют от биологов побольше проверенных биологических фактов. Очевидно, что успешным будет тесное сотрудничество различных специалистов .

Важным звеном, объединяющим магнитобиологические проблемы, является реакция нервной системы на магнитные поля. Именно мозг первым реагирует на любые изменения во внешней среде. Именно изучение его реакций будет ключом к решению многих задач магнитобиологии.

Среди технологических революций конца XX века одной из самых главных является перевод потребителей на атомное топливо. И снова магнитные поля оказались в центре внимания. Только они смогут обуздать своенравную плазму в «мирной» термоядерной реакции, которая должна прийти на смену реакциям деления радиоактивных ядер урана и тория.

Что бы еще сжечь? – навязчивым рефреном звучит вопрос, вечно мучающий энергетиков. Довольно долго нас выручали дрова, но у них малая энергоемкость, а потому дровяная цивилизация примитивна. Сегодняшнее наше благосостояние основано на сжигании ископаемого топлива, однако легкодоступные запасы нефти, угля и природного газа медленно, но верно иссякают. Волей-неволей приходится переориентировать топливно-энергетический баланс страны на что-то другое. В будущем веке остатки органического топлива придется сохранять для сырьевых нужд химии. А основным энергосырьем, как известно, станет ядерное топливо.

Идея магнитной термоизоляции плазмы основана на известном свойстве электрически заряженных частиц, движущихся в магнитном поле, искривлять свою траекторию и двигаться по спирали силовых линий поля. Это искривление траектории в неоднородном магнитном поле приводит к тому, что частица выталкивается в область, где магнитное поле более слабое. Задача состоит в том, чтобы плазму со всех сторон окружить более сильным полем. Эта задача решается во многих лабораториях мира. Магнитное удержание плазмы открыли советские ученые, которые в 1950 г. предложили удерживать плазму в так называемых магнитных ловушках (или, как часто их называют, в магнитных бутылках).

Примером весьма простой системы для магнитного удержания плазмы может служить ловушка с магнитными пробками или зеркалами (пробкотрон). Система представляет собой длинную трубу, в которой создано продольное магнитное поле. На концах трубы намотаны более массивные обмотки, чем в середине. Это приводит к тому, что магнитные силовые линии на концах трубы расположены гуще и магнитное поле в этих областях сильнее. Таким образом, частица, попавшая в магнитную бутылку, не может покинуть систему, ибо ей пришлось бы пересекать силовые линии и вследствие лоренцевой силы «накручиваться» на них. На этом принципе была построена огромная магнитная ловушка установки «Огра-1», пущенной в Институте атомной энергии имени И.В. Курчатова в 1958 г. Вакуумная камера «Огра-1» имеет длину 19 м при внутреннем диаметре 1,4 м. Средний диаметр обмотки, создающей магнитное поле, составляет 1,8 м, напряженность поля в середине камеры 0,5 Тл, в пробках 0,8 Тл.

Стоимость электроэнергии, получаемой от термоядерных электростанций, будет очень низкой вследствие дешевизны исходного сырья (воды). Настанет время, когда электростанции будут вырабатывать буквально океаны электроэнергии. С помощью этой электроэнергии станет возможным, быть может, не только кардинально изменить условия жизни на Земле – повернуть вспять реки, осушить болота, обводнить пустыни, – но и изменить облик окружающего космического пространства – заселить и «оживить» Луну, окружить Марс атмосферой.

Одна из основных трудностей на этом пути – создание магнитного поля заданной геометрии и величины. Магнитные поля в современных термоядерных ловушках относительно невелики. Тем не менее, если учесть громадные объемы камер, отсутствие ферромагнитного сердечника, а также специальные требования к форме магнитного поля, затрудняющие создание таких систем, то следует признать, что имеющиеся ловушки – большое техническое достижение.

Исходя из вышесказанного, можно сделать вывод, что в настоящее время нет отрасли, в которой бы не применялся магнит или явление магнетизма.

5. Сверхпроводники и их применение магнит сверхпроводник

Сверхпроводники часто называют ключом к электротехнике будущего. Это объясняется их поистине удивительными свойствами. Вообще-то, сверхпроводников как особых материалов не существует. Это обычные материалы из элементов таблицы Менделеева, у которых в определенных условиях появляются необычные свойства. Алюминий, например, считается хорошим проводником, неплохо пропускает тепло и в своей толще чуть усиливает магнитное поле (парамагнетик). При охлаждении ниже 1,2 К электропроводность алюминия возрастает бесконечно (сверхпроводник), теплопроводность так же сильно ухудшается (теплоизолятор), а магнитное поле в него уже не может проникнуть (диамагнетик). Казалось бы, что за достижение столь полезных качеств надо платить слишком дорого – достижение низких температур – удовольствие недешевое. Оказалось, однако, что стоимость рефрижераторов и тепловой защиты холодных зон несравнима с достигаемыми преимуществами. Стало возможным без чрезмерных затрат получать огромные токи (в несколько тысяч раз большие, чем в обычных проводниках) и огромные магнитные поля при скромных сечениях токонесущих шин: именно это является чрезвычайно важным при создании мощных электроэнергетических устройств .

Ясно, что для создания генераторов большей мощности понадобятся новые конструкторские решения и материалы. В этой связи особые надежды ученые и инженеры возлагают на сверхпроводимость. Недаром одним из основных направлений развития науки намечены теоретические и экспериментальные исследования в области сверхпроводящих материалов, а одним из основных направлений развития техники – разработка сверхпроводниковых турбогенераторов. Сверхпроводящее электрооборудование позволит резко увеличить электрические и магнитные нагрузки в элементах устройств и благодаря этому резко сократить их размеры. В сверхпроводящем проводе допустима плотность тока, в 10...50 раз превышающая плотность тока в обычном электрооборудовании. Магнитные поля можно будет довести до значений порядка 10 Тл, по сравнению с 0,8...1 Тл в обычных машинах. Если учесть, что размеры электротехнических устройств обратно пропорциональны произведению допустимой плотности тока на индукцию магнитного поля, то ясно, что применение сверхпроводников уменьшит размеры и массу электрооборудования во много раз!

Многие препятствия сами по себе отпадают, если использовать эффект сверхпроводимости и применить сверхпроводящие материалы. Тогда потери в роторной обмотке можно практически свести к нулю, так как постоянный ток не будет встречать в ней сопротивления. А раз так, повышается КПД машины. Протекающий по сверхпроводящей обмотке возбуждения ток большой силы создает столь сильное магнитное поле, что уже нет необходимости применять стальной магнитопровод, традиционный для любой электрической машины. Устранение стали снизит массу ротора и его инерционность. Создание криогенных электрических машин – не дань моде, а необходимость, естественное следствие научно-технического прогресса. И есть все основания утверждать, что к концу века сверхпроводящие турбогенераторы мощностью более 1000 МВт будут работать в энергосистемах .

Энергетикам нужны не только холодные генераторы. Уже изготовлено и испытано несколько десятков сверхпроводящих трансформаторов (первый из них построен американцем Мак-Фи в 1961 г.; трансформатор работал на уровне 15 кВт). Имеются проекты сверхпроводящих трансформаторов на мощность до 1 млн. кВт. При достаточно больших мощностях сверхпроводящие трансформаторы будут легче обычных на 40...50% при примерно одинаковых с обычными трансформаторами потерях мощности (в этих расчетах учитывалась и мощность ожижителя).У сверхпроводящих трансформаторов, однако, есть и существенные недостатки. Они связаны с необходимостью защиты трансформатора от выхода его из сверхпроводящего состояния при перегрузках, коротких замыканиях, перегревах, когда магнитное поле, ток или температура могут достичь критических значений.

В последние годы становится все более близкой к осуществлению мечта о сверхпроводящих линиях электропередачи. Все возрастающая потребность в электроэнергии делает очень привлекательной передачу большой мощности на большие расстояния. Советские ученые убедительно показали перспективность сверхпроводящих линий передачи. Стоимость линий будет сопоставима со стоимостью обычных воздушных линий передачи электроэнергии (стоимость сверхпроводника, если учесть высокое значение критической плотности его тока по сравнению с экономически целесообразной плотностью тока в медных или алюминиевых проводах, невелика) и ниже стоимости кабельных линий. Осуществлять сверхпроводниковые линии электропередачи предполагается так: между конечными пунктами передачи в земле прокладывается трубопровод с жидким азотом. Внутри этого трубопровода располагается трубопровод с жидким гелием. Гелий и азот протекают по трубопроводам вследствие создания между исходным и конечным пунктами разности давлений. Таким образом, ожижительно-насосные станции будут лишь на концах линии. Жидкий азот можно использовать одновременно и в качестве диэлектрика. Гелиевый трубопровод поддерживается внутри азотного диэлектрическими стойками (у большинства изоляторов диэлектрические свойства при низких температурах улучшаются). Гелиевый трубопровод имеет вакуумную изоляцию. Внутренняя поверхность трубопровода жидкого гелия покрыта слоем сверхпроводника. Потери в такой линии с учетом неизбежных потерь на концах линии, где сверхпроводник должен стыковаться с шинами при обычной температуре, не превысят нескольких долей процента, а в обычных линиях электропередачи потери в 5...10 раз больше!

Основой энергетики начала XXI века могут стать атомные и термоядерные станции с чрезвычайно мощными электрогенераторами. Электрические поля, порожденные сверхпроводящими электромагнитами, могучими реками смогут перетекать по сверхпроводящим линиям электропередачи в сверхпроводящие накопители энергии, откуда по мере необходимости будут отбираться потребителями. Электростанции смогут равномерно вырабатывать мощность и днем, и ночью, а освобождение их от плановых режимов должно повысить экономичность и срок службы главных агрегатов .

К наземным электростанциям можно добавить космические солнечные станции. Зависнув над фиксированными точками планеты, они должны будут преобразовывать солнечные лучи в коротковолновое электромагнитное из лучение, чтобы посылать сфокусированные потоки энергии к наземным преобразователям в токи промышленной назначения. Все электрооборудование наземно-космических электрических систем должно быть сверхпроводящим, в противном случае потери в проводниках конечной электропроводности окажутся, по-видимому, неприемлемо большими.


Заключение

Мировоззрение и благосостояние человека в достаточной степени зависит от прогресса науки.

Маленькой дрожащей стрелке, с одного конца выкрашенной в черный цвет, с другого – в красный, мы обязаны удивительными открытиями. Неизвестные миры, экзотические животные, благоухающие острова, ледяные континенты и не знающие цивилизации народы предстали перед глазами изумленных «водителей фрегатов», сверявших свой путь с маленькой стрелкой компаса...

В огромном арсенале средств современной науки магнит занимает совершенно особое место. Без него невозможно никакое исследование, никакая наука, никакая промышленность, никакая цивилизованная жизнь. Если вспомнить еще и о том, что не обладай Земля магнитным полем, она была бы сейчас испепеленной космическим излучением планетой, как Марс, то можно почувствовать к магнитам нечто вроде благодарности.

Но кроме благодарности магнит достоин и уважения – ведь если мыслить в исторических масштабах, то приходится сознаться, что мы немногое еще можем сказать о природе притяжения магнита.

Вопрос магнитного притяжения еще сотни лет будет волновать умы мальчишек и ученых. Не станем переоценивать своих знаний. Кто это делает, часто попадает впросак. Вспомним, что было написано об электричестве в 1755 г. в одном лондонском еженедельнике: «Электричество – сила, хорошо изученная человеком. Ее с успехом применяют для лечения болезней, эта сила способна ускорять развитие растений» .

Эти слова были написаны до Фарадея, Ампера, Максвелла, когда люди, как теперь смело можно утверждать, почти ничего не знали об электричестве. А теперь, во второй половине XX века, вряд ли какой-нибудь ученый найдет в себе смелость утверждать: «Электричество – сила, хорошо изученная человеком».

Мы много знаем об электричестве и магнетизме и с каждым днем узнаем все больше и больше. Но за одной проблемой встают другие, не менее сложные и интересные. Жизнь всегда будет полна загадок. И наряду с самыми сложными – загадкой жизни и загадкой Вселенной – загадка магнита всегда будет давать пищу для любознательного ума.

Альберт Эйнштейн на всю жизнь запомнил тот день, когда ему, четырехлетнему ребенку, подарили новую игрушку – компас. На всю жизнь сохранил он детскую удивлённость чудесными свойствами магнита, теми самыми свойствами, которые тысячи лет назад волновали наших предков .

Вряд ли когда-нибудь найдется человек, который возьмет на себя смелость утверждать: «Я постиг загадку магнита!» Однако ученые, познавшие удивительно небольшую толику тайны, смогли создать устройства, способные соперничать с самыми сильными магнитами, созданными природой.


Список используемой литературы

1. Большая советская энциклопедия. Издательство "Советская энциклопедия", М., 1974.

2. Дягилев, Ф.М. Из истории физики и жизни ее творцов: учебное пособие для вузов / Ф.М. Дягилев. - М.: Просвещение, 1986г. – 280 с.

3. Кабардин, О.Ф. Физика: Справ. Материалы: Учеб. Пособие для учащихся. / О.Ф. Кабардин. - 3-е изд. - М.: Просвещение, 1991. – 367с.: ил.

4. Карцев, В.П. Магнит за три тысячелетия / В.П. Карцев. - М.: Знание, 1986г. – 230 с.

5. Лось, В.А. История и философия науки. Основы курса: учебное пособие / В.А. Лось. - М.: Издательство – торговая корпорация «Дашков и К 0 », 2004.- 404 с.

6. Милковская, Л.Б. Повторим физику: учебное пособие для вузов / Л.Б. Милковская. – М.: Высшая школа, 1991– 307с.: ил.

7. Симоненко, О.Д. Электротехническая наука в первой половине XX века. / О.Д. Симоненко. - М.: Знание, 1988г. – 325с.

8. Современная радиоэлектроника (50-80-е гг.) / В.П. Борисов [и др.] ; под ред. В.П. Борисова, В.М. Родионова. - М.: Омега-Л, 1993. – 340 с.

9. Холодов, Ю.А. Человек в магнитной паутине: / Ю.А. Холодов. – М.: Знание, 1972 г. – 173 с.

10. Электромагнитные динамометры//Наука и техника. - 2008. - №5. - с.25-27

Сегодня постоянные магниты находят полезное применение во многих областях человеческой жизни. Порой мы не замечаем их присутствия, однако практически в любой квартире в различных электроприборах и в механических устройствах, если внимательно приглядеться, можно обнаружить . Электробритва и динамик, видеоплеер и настенные часы, мобильный телефон и микроволновка, дверца холодильника наконец - всюду можно встретить постоянные магниты.

Они применяются в медицинской технике и в измерительной аппаратуре, в различных инструментах и в автомобильной промышленности, в двигателях постоянного тока, в акустических системах, в бытовых электроприборах и много-много где еще: радиотехника, приборостроение, автоматика, телемеханика и т. д. - ни одна из этих областей не обходится без использования постоянных магнитов.

Конкретные решения с применением постоянных магнитов можно было бы перечислять бесконечно, тем не менее, предметом данной статьи станет краткий обзор нескольких применений постоянных магнитов в электротехнике и электроэнергетике.


Со времен Эрстеда и Ампера широко известно, что проводники с током и электромагниты взаимодействуют с магнитным полем постоянного магнита. На этом принципе основана работа многих двигателей и генераторов. За примерами далеко ходить не надо. Вентилятор в блоке питания вашего компьютера имеет ротор и статор.

Крыльчатка с лопастями представляет собой ротор с расположенными по кругу постоянными магнитами, а статор - это сердечник электромагнита. Перемагничивая статор, электронная схема создает эффект вращения магнитного поля статора, за магнитным полем статора, стремясь к нему притянуться, следует магнитный ротор - вентилятор вращается. Аналогичным образом реализовано вращение жесткого диска, и подобным образом работают .


В электрогенераторах постоянные магниты также нашли свое применение. Синхронные генераторы для домашних ветряков, например, - одно из прикладных направлений.

На статоре генератора по окружности располагаются генераторные катушки, которые в процессе работы ветряка пересекаются переменным магнитным полем движущихся (под действием дующего на лопасти ветра) постоянных магнитов, закрепленных на роторе. Повинуясь , пересекаемые магнитами проводники генераторных катушек направляют в цепь потребителя ток.

Такие генераторы используются не только в ветряках, но и в некоторых промышленных моделях, где вместо обмотки возбуждения на роторе установлены постоянные магниты. Достоинство решений с магнитами - возможность получить генератор с низкими номинальными оборотами.

В проводящий диск вращается в поле постоянного магнита. Ток потребления, походя через диск, взаимодействует с магнитным полем постоянного магнита, и диск вращается.

Чем больше ток - тем выше частота вращения диска, поскольку вращающий момент создается силой Лоренца, действующей на движущиеся заряженные частицы внутри диска со стороны магнитного поля постоянного магнита. По сути, такой счетчик - это небольшой мощности с магнитом на статоре.


Для измерения слабых токов применяют - очень чувствительные измерительные приборы. Здесь подковообразный магнит взаимодействует с маленькой токонесущей катушкой, которая подвешена в зазоре между полюсами постоянного магнита.

Отклонение катушки в процессе измерения происходит благодаря вращающему моменту, который создается из-за магнитной индукции, возникающей при прохождении тока через катушку. Таким образом, отклонение катушки оказывается пропорционально значению результирующей магнитной индукции в зазоре, и, соответственно, току в проводе катушки. Для малых отклонений шкала гальванометра получается линейной.


Наверняка на вашей кухне есть микроволновка. И в ней есть целых два постоянных магнита. Для генерации СВЧ-диапазона, в микроволновке установлен . Внутри магнетрона электроны движутся в вакууме от катода к аноду, и в процессе движения их траектория должна искривляться, чтобы резонаторы на аноде возбуждались достаточно мощно.

Для искривления траектории электронов, сверху и снизу вакуумной камеры магнетрона установлены кольцевые постоянные магниты. Магнитное поле постоянных магнитов искривляет траектории движения электронов так, что получается мощный вихрь из электронов, который возбуждает резонаторы, которые в свою очередь генерируют электромагнитные волны СВЧ-диапазона для разогрева пищи.


Чтобы головка жесткого диска точно позиционировалась, ее движения в процессе записи и считывания информации должны очень точно управляться и контролироваться. Снова на помощь приходит постоянный магнит. Внутри жесткого диска, в магнитном поле закрепленного неподвижно постоянного магнита, перемещается катушка с током, связанная с головкой.

Когда на катушку головки подается ток, магнитное поле этого тока, в зависимости от его значения, отталкивает катушку от постоянного магнита сильнее или слабее, в ту или иную сторону, таким образом головка приходит в движение, причем с высокой точностью. Этим движением управляет микроконтроллер.


В целях повышения эффективности энергопотребления, в некоторых странах для предприятий сооружают механические накопители электроэнергии. Это электромеханические преобразователи, работающие на принципе инерционного накопления энергии в форме кинетической энергии вращающегося маховика, называемые .

Так например, в Германии компания ATZ разработала кинетический накопитель энергии на 20 МДж, мощностью 250 кВт, причем удельная энергоемкость составляет примерно 100 Вт-ч/кг. При весе маховика в 100 кг, при вращении со скоростью 6000 об/мин, цилиндрической конструкции диаметром 1,5 метра нужны были качественные подшипники. В итоге нижний подшипник был изготовлен, конечно, на основе постоянных магнитов.