Виды треугольников. Углы треугольника
Деление треугольников на остроугольные, прямоугольные и тупоугольные. Классификация по соотношению сторон делит треугольники на разносторонние, равносторонние и равнобедренные. Причем каждый треугольник одновременно принадлежит к двум . Например, он может быть прямоугольным и разносторонним одновременно.
Определяя вид по типу углов, очень внимательны. Тупоугольным будет называться такой треугольник, у которого один из углов является , то есть составляет боле 90 градусов. Прямоугольный треугольник может быть вычислен по наличию одного прямого (равного 90 градусам) угла. Однако чтобы классифицировать треугольник как остроугольный, вам нужно будет убедиться, что все три его угла острыми.
Определяя вид треугольника по соотношению сторон, для начала вам придется узнать длины всех трех сторон. Однако если по условию длины сторон вам не даны, помочь вам смогут углы. Разносторонним будет являться треугольник, все три стороны которого имеют разную длину. Если длины сторон неизвестны, то треугольник может быть классифицирован как разносторонний в случае, если все три его угла являются разными. Разносторонний треугольник может быть тупоугольным, прямоугольным и остроугольным.
Равнобедренным будет являться треугольник, две из трех сторон которого равны между собой. Если длины сторон вам не даны, ориентируйтесь по двум равным между собой углам. Равнобедренный треугольник, как и разносторонний, может быть и тупоугольным, и прямоугольным и остроугольным.
Равносторонним может быть только такой треугольник, все три стороны которого имеют одинаковую длину. Все его углы также равны между собой, и каждый из них равен 60-ти градусам. Отсюда ясно, что равносторонние треугольники всегда являются остроугольными.
Совет 2: Как определить тупоугольный и остроугольный треугольник
Простейший из многоугольников – это треугольник. Он образуется при помощи трех точек, лежащих в одной плоскости, но не лежащих на одной прямой, попарно соединенных отрезками. Тем не менее, треугольники бывают разных типов, а значит, обладают разными свойствами.
Инструкция
Принято выделять три типа : тупоугольные, остроугольные и прямоугольные. Это по типу углов. Тупоугольным называется треугольник, у которого один из углов является тупым. Тупым называется угол, имеющий величину больше девяноста градусов, но меньше ста восьмидесяти. Например, в треугольнике ABC угол ABC равен 65°, угол BCA равен 95°, угол CAB равен 20°. Углы ABC и CAB меньше 90°, но угол BCA больше, значит, треугольник тупоугольный.
Остроугольным называется треугольник, у которого все углы являются острыми. Острым называется угол, имеющий величину меньше девяноста и больше нуля градусов. Например, в треугольнике ABC угол ABC равен 60°, угол BCA равен 70°, угол CAB равен 50°. Все три угла меньше 90°, значит треугольник . Если вам известно, что у треугольника все стороны равны, это значит, что все углы у него тоже равны между собой, при этом равны шестидесяти градусам. Соответственно, все углы в таком треугольнике меньше девяноста градусов, а следовательно такой треугольник является остроугольным.
Если в треугольнике один из углов равен девяноста градусам, это значит, что он не относится ни широкоугольному типу, ни к остроугольному. Это прямоугольный треугольник.
Если вид треугольника определять по соотношению сторон, они будут равносторонние, разносторонние и равнобедренные. В равностороннем треугольнике все стороны равны, а это, как вы выяснили, говорит о том, что треугольник остроугольный. Если у треугольника равны только две стороны или стороны не равны между собой, он может быть и тупоугольным, и прямоугольным, и остроугольным. Значит, в этих случаях необходимо вычислить или измерить углы и делать умозаключения, согласно пунктам 1, 2 или 3.
Видео по теме
Источники:
- тупоугольный треугольник
Равенство двух или более треугольников соответствует случаю, когда все стороны и углы данных треугольников равны. Однако существует ряд более простых критериев для доказательства данного равенства.
Вам понадобится
- Учебник по геометрии, лист бумаги, простой карандаш, транспортир, линейка.
Инструкция
Откройте учебник по геометрии седьмого класса на параграфе о признаках равенства треугольников. Вы увидите, что существует ряд основных признаков, доказывающих равенство двух треугольников. Если два треугольника, равенство которых проверяется, являются произвольными, то для них существует три основных признака равенства. Если же известна какая-то дополнительная информация о треугольниках, то основные три признака дополняются еще несколькими. Это относится, например, к случаю равенства прямоугольных треугольников.
Прочитайте первое правило о равенстве треугольников. Как известно, оно позволяет считать треугольники равными, если можно доказать, что какой-либо один угол и две прилегающие к нему стороны двух треугольников равны. Для того чтобы понять, данный закон, начертите на листе бумаги с помощью транспортира два одинаковых определенных угла, образованных двумя лучами, исходящими из одной точки. Отмерьте линейкой одинаковые стороны от вершины нарисованного угла в обоих случаях. Используя транспортир, измерьте величины полученных углов двух образованных треугольников, убедитесь, что они равны.
Для того чтобы не прибегать к таким практическим мерам для понимания признака равенства треугольников, прочитайте доказательство первого признака равенства. Дело в том, что каждое правило о равенстве треугольников имеет строгое теоретическое доказательство, просто его не удобно использовать в целях запоминания правил.
Прочитайте второй признак равенства треугольников. Он гласит, что два треугольника будут равны в том случае, если какая-либо одна сторона и два прилегающие к ней угла двух таких треугольников равны. Для того чтобы запомнить данное правило, представьте нарисованную сторону треугольника и два прилежащих к ней угла. Представьте, что длины сторон углов постепенно увеличиваются. В конце концов, они пересекутся, образуя третий угол. В данной мысленной задаче важным является то, что точка пересечения сторон, которые мысленно увеличиваются, а также полученный угол однозначно определяются третьей стороной и двумя прилегающими к ней углами.
Если вам не дана никакая информация об углах исследуемых треугольников, то используйте третий признак равенства треугольников. По данному правилу, два треугольника считаются равными, если все три стороны одно из них равны соответствующим трем сторонам другого. Таким образом, данное правило говорит о том, что длины сторон треугольника однозначно определяют все углы треугольника, а значит, они однозначно определяют и сам треугольник.
Видео по теме
Треугольники
Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки -- его сторонами.
Виды треугольников
Треугольник называется равнобедренным, если у него две сторны равны. Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника.
Треугольник, у которого все сторны равны, называется равносторонним или правильным.
Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны называются катетами.
Треугольник называется остроугольным, если все три его угла - острые, то есть меньше 90°.
Треугольник называется тупоугольным, если один из его углов - тупой, то есть больше 90°.
Основные линии треугольника
Медиана
Медиана треугольника - это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.
Свойства медиан треугольника
Медиана разбивает треугольник на два треугольника одинаковой площади.
Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.
Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.
Биссектриса
Биссектриса угла - это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.
Свойства биссектрис треугольника
Высота
Высотой треугольника называется перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону этого треугольника.
Свойства высот треугольника
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
Срединный перпендикуляр
Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Верно и обратное утверждение: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника .
Средняя линия
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
Свойство средней линии треугольника
Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.
Формулы и соотношения
Признаки равенства треугольников
Два треугольника равны, если у них соответственно равны:
две стороны и угол между ними;
два угла и прилежащая к ним сторона;
три стороны.
Признаки равенства прямоугольных треугольников
Два прямоугольных треугольника равны, если у них соответственно равны:
гипотенуза и острый угол;
катет и противолежащий угол;
катет и прилежащий угол;
два катета ;
гипотенуза и катет .
Подобие треугольников
Два треугольника подобны, если выполняется одно из следующих условий, называемых признаками подобия:
два угла одного треугольника равны двум углам другого треугольника;
две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, образованные этими сторонами, равны;
три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника.
В подобных треугольниках соответствующие линии (высоты , медианы , биссектрисы и т. п.) пропорциональны.
Теорема синусов
Стороны треугольника пропорциональны синусам противолежащих углов, причем коэффициент пропорциональности равен диаметру описанной около треугольника окружности :
Теорема косинусов
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a 2 = b 2 + c 2 - 2bc cos
Формулы площади треугольника
Произвольный треугольник
a, b, c - стороны; - угол между сторонамиa и b ;- полупериметр;R - радиус описанной окружности; r - радиус вписанной окружности; S - площадь; h a - высота, проведенная к стороне a .
О том, что такое треугольник, квадрат, куб, нам рассказывает наука геометрия. В современном мире ее изучают в школах все без исключения. Также наукой, которая изучает непосредственно то, что такое треугольник и какие у него свойства, является тригонометрия. Она исследует подробно все явления, связанные с данными О том, что такое треугольник, мы и поговорим сегодня в нашей статье. Ниже будут описаны их виды, а также некоторые теоремы, связанные с ними.
Что такое треугольник? Определение
Это плоский многоугольник. Углов он имеет три, что понятно из его названия. Также он имеет три стороны и три вершины, первые из них — это отрезки, вторые — точки. Зная, чему равны два угла, можно найти третий, отняв сумму первых двух от числа 180.
Какими бывают треугольники?
Их можно классифицировать по различным критериям.
В первую очередь они делятся на остроугольные, тупоугольные и прямоугольные. Первые обладают острыми углами, то есть такими, которые равны менее чем 90 градусам. У тупоугольных один из углов — тупой, то есть такой, который равен более 90 градусам, остальные два — острые. К остроугольным треугольникам относятся также и равносторонние. У таких треугольников все стороны и углы равны. Все они равны 60 градусам, это можно легко вычислить, разделив сумму всех углов (180) на три.
Прямоугольный треугольник
Невозможно не поговорить о том, что такое прямоугольный треугольник.
У такой фигуры один угол равен 90 градусам (прямой), то есть две из его сторон расположены перпендикулярно. Остальные два угла являются острыми. Они могут быть равными, тогда он будет равнобедренным. С прямоугольным треугольником связана теорема Пифагора. При помощи ее можно найти третью сторону, зная две первые. Согласно данной теореме, если прибавить квадрат одного катета к квадрату другого, можно получить квадрат гипотенузы. Квадрат же катета можно подсчитать, отняв от квадрата гипотенузы квадрат известного катета. Говоря о том, что такое треугольник, можно вспомнить и о равнобедренном. Это такой, у которого две из сторон равны, также равны и два угла.
Что такое катет и гипотенуза?
Катет — это одна из сторон треугольника, которые образуют угол в 90 градусов. Гипотенуза — это оставшаяся сторона, которая расположена напротив прямого угла. Из него на катет можно опустить перпендикуляр. Отношение прилежащего катета к гипотенузе называется не иначе как косинус, а противоположного — синус.
- в чем его особенности?
Он прямоугольный. Его катеты равны трем и четырем, а гипотенуза — пяти. Если вы увидели, что катеты данного треугольника равны трем и четырем, можете не сомневаться, что гипотенуза будет равна пяти. Также по такому принципу можно легко определить, что катет будет равен трем, если второй равен четырем, а гипотенуза - пяти. Чтобы доказать данное утверждение, можно применить теорему Пифагора. Если два катета равны 3 и 4, то 9 + 16 = 25, корень из 25 - это 5, то есть гипотенуза равна 5. Также египетским треугольником называется прямоугольный, стороны которого равны 6, 8 и 10; 9, 12 и 15 и другим числам с соотношением 3:4:5.
Каким еще может быть треугольник?
Также треугольники могут быть вписанными и описанными. Фигура, вокруг которой описана окружность, называется вписанной, все ее вершины являются точками, лежащими на окружности. Описанный треугольник — тот, в который вписана окружность. Все его стороны соприкасаются с ней в определенных точках.
Как находится
Площадь любой фигуры измеряется в квадратных единицах (кв. метрах, кв. миллиметрах, кв. сантиметрах, кв. дециметрах и т. д.) Данную величину можно рассчитать разнообразными способами, в зависимости от вида треугольника. Площадь какой угодно фигуры с углами можно найти, если умножить ее сторону на перпендикуляр, опущенный на нее из противоположного угла, и разделив данную цифру на два. Также можно найти эту величину, если умножить две стороны. Потом умножить это число на синус угла, расположенного между данными сторонами, и разделить это получившееся на два. Зная все стороны треугольника, но не зная его углов, можно найти площадь еще и другим способом. Для этого нужно найти половину периметра. Затем поочередно отнять от данного числа разные стороны и перемножить полученные четыре значения. Далее найти из числа, которое вышло. Площадь вписанного треугольника можно отыскать, перемножив все стороны и разделив полученное число на которая описана вокруг него, умноженный на четыре.
Площадь описанного треугольника находится таким образом: половину периметра умножаем на радиус окружности, которая в него вписана. Если то его площадь можно найти следующим образом: сторону возводим в квадрат, умножаем полученную цифру на корень из трех, далее делим это число на четыре. Похожим образом можно вычислить высоту треугольника, у которого все стороны равны, для этого одну из них нужно умножить на корень из трех, а потом разделить данное число на два.
Теоремы, связанные с треугольником
Основными теоремами, которые связаны с данной фигурой, являются теорема Пифагора, описанная выше, и косинусов. Вторая (синусов) заключается в том, что, если разделить любую сторону на синус противоположного ей угла, то можно получить радиус окружности, которая описана вокруг него, умноженный на два. Третья (косинусов) заключается в том, что, если от суммы квадратов двух сторон отнять их же произведение, умноженное на два и на косинус угла, расположенного между ними, то получится квадрат третьей стороны.
Треугольник Дали — что это?
Многие, столкнувшись с этим понятием, сначала думают, что это какое-то определение в геометрии, но это совсем не так. Треугольник Дали — это общее название трех мест, которые тесно связаны с жизнью знаменитого художника. «Вершинами» его являются дом, в котором Сальвадор Дали жил, замок, который он подарил своей жене, а также музей сюрреалистических картин. Во время экскурсии по этим местам можно узнать много интереснейших фактов об этом своеобразном креативном художнике, известном во всем мире.
Треугольник — это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами (а, b, c), которые соответствуют заглавным буквам, обозначающим противоположные вершины (A, B, C).
Если в треугольнике все три угла острые, то это остроугольный треугольник .
Если в треугольнике один из углов прямой, то это прямоугольный треугольник . Стороны, образующие прямой угол, называются катетами . Сторона, противоположная прямому углу, называется гипотенузой .
Если в треугольнике один из углов тупой, то это тупоугольный треугольник.
Треугольник равнобедренный , если две его стороны равны; эти равные стороны называются боковыми, а третья сторона называется основанием треугольника.
Треугольник равносторонний , если все его стороны равны.
Основные свойства треугольников
В любом треугольнике:
1. Против большей стороны лежит больший угол, и наоборот.
2. Против равных сторон лежат равные углы, и наоборот.
В частности, все углы в равностороннем треугольнике равны.
3. Сумма углов треугольника равна 180º .
Из двух последних свойств следует, что каждый угол в равностороннем
треугольнике равен 60º.
4. Продолжая одну из сторон треугольника, получаем внешний
угол. Внешний угол треугольника равен сумме внутренних углов,
не смежных с ним.
5. Любая сторона треугольника меньше суммы двух других сторон и больше
их разности.
Признаки равенства треугольников.
Треугольники равны, если у них соответственно равны:
A) две стороны и угол между ними;
b) два угла и прилегающая к ним сторона;
c) три стороны.
Признаки равенства прямоугольных треугольников.
Два прямоугольных треугольника равны, если выполняется одно из следующих условий:
1) равны их катеты;
2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого;
3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого;
4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого;
5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.
Высота треугольника — это перпендикуляр, опущенный из любой вершины на противоположную сторону (или её продолжение). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника . Ортоцентр остроугольного треугольника расположен внутри треугольника, а ортоцентр тупоугольного треугольника — снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.
Медиана — это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника пересекаются в одной точке, всегда лежащей внутри треугольника и являющейся его центром тяжести . Эта точка делит каждую медиану в отношении 2:1, считая от вершины.
Свойство медианы равнобедренного треугольника. В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой.
Биссектриса — это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника пересекаются в одной точке, всегда лежащей внутри треугольника и являющейся центром вписанной окружности . Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам.
Срединный перпендикуляр — это перпендикуляр, проведенный из средней точки отрезка (стороны). Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанной окружности. В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном — снаружи; в прямоугольном — в середине гипотенузы. Ортоцентр, центр тяжести, центр описанной и центр вписанной окружности совпадают только в равностороннем треугольнике.
Средняя линия треугольника — это отрезок, соединяющий середины двух его сторон.
Свойство средней линии треугольника . Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна её половине.
Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. c 2 = a 2 + b 2 .
Доказательства теоремы Пифагора можно посмотреть здесь.
Теорема синусов . Стороны треугольника пропорциональны синусам противолежащих углов.
Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.
Доказательства теоремы синусов и теоремы косинусов можно посмотреть здесь .
Теорема о сумме углов в треугольнике. Сумма внутренних углов треугольника равна 180°.
Теорема о внешнем угле треугольника
. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.