Законы Фарадея в химии и физике — краткое объяснение простыми словами. Открытие Фарадея и Ленца: закон электромагнитной индукции — формула явления


В первой экспериментальной демонстрации электромагнитной индукции (август 1831) Фарадей обмотал двумя проводами противоположные стороны железного тора (конструкция похожа на современный трансформатор). Основываясь на своей оценке недавно обнаруженного свойства электромагнита, он ожидал, что при включении тока в одном проводе особого рода волна пройдёт сквозь тор и вызовет некоторое электрическое влияние на его противоположной стороне. Он подключил один провод к гальванометру и смотрел на него, когда другой провод подключал к батарее. В самом деле, он увидел кратковременный всплеск тока (который он назвал «волной электричества»), когда подключал провод к батарее, и другой такой же всплеск, когда отключал его. В течение двух месяцев Фарадей нашёл несколько других проявлений электромагнитной индукции. Например, он увидел всплески тока, когда быстро вставлял магнит в катушку и вытаскивал его обратно, он генерировал постоянный ток во вращающемся вблизи магнита медном диске со скользящим электрическим проводом («диск Фарадея ») .

Фарадей объяснил электромагнитную индукцию с использованием концепции так называемых силовых линий . Однако, большинство учёных того времени отклонили его теоретические идеи, в основном потому, что они не были сформулированы математически. Исключение составил Максвелл , который использовал идеи Фарадея в качестве основы для своей количественной электромагнитной теории. В работах Максвелла аспект изменения во времени электромагнитной индукции выражен в виде дифференциальных уравнений. Оливер Хевисайд назвал это законом Фарадея, хотя он несколько отличается по форме от первоначального варианта закона Фарадея и не учитывает индуцирование ЭДС при движении. Версия Хевисайда является формой признанной сегодня группы уравнений, известных как уравнения Максвелла .

Закон Фарадея как два различных явления

Некоторые физики отмечают, что закон Фарадея в одном уравнении описывает два разных явления: двигательную ЭДС , генерируемую действием магнитной силы на движущийся провод, и трансформаторную ЭДС , генерируемую действием электрической силы вследствие изменения магнитного поля. Джеймс Клерк Максвелл обратил внимание на этот факт в своей работе О физических силовых линиях в 1861 году. Во второй половине части II этого труда Максвелл даёт отдельное физическое объяснение для каждого из этих двух явлений. Ссылка на эти два аспекта электромагнитной индукции имеется в некоторых современных учебниках. Как пишет Ричард Фейнман:

Таким образом, «правило потока» о том, что ЭДС в цепи равна скорости изменения магнитного потока через контур, применяется независимо от причины изменения потока: то ли потому что поле изменяется, то ли потому что цепь движется (или и то, и другое).... В нашем объяснении правила мы использовали два совершенно различных закона для двух случаев  –    v × B {\displaystyle {\stackrel {\mathbf {v\times B} }{}}}   для «движущейся цепи» и   ∇ x E = − ∂ t B {\displaystyle {\stackrel {\mathbf {\nabla \ x\ E\ =\ -\partial _{\ t}B} }{}}}   для «меняющегося поля».

Мы не знаем никакого аналогичного положения в физике, когда такие простые и точные общие принципы требовали бы для своего реального понимания анализа с точки зрения двух различных явлений.

Отражение этой очевидной дихотомии было одним из основных путей, которые привели Эйнштейна к разработке специальной теории относительности :

Известно, что электродинамика Максвелла - как её обычно понимают в настоящее время - при применении к движущимся телам приводит к асимметрии, которая, как кажется, не присуща этому явлению. Возьмем, к примеру, электродинамическое взаимодействие магнита и проводника. Наблюдаемое явление зависит только от относительного движения проводника и магнита, тогда как обычное мнение рисует резкое различие между этими двумя случаями, в которых либо одно, либо другое тело находится в движении. Ибо, если магнит находится в движении, а проводник покоится, в окрестности магнита возникает электрическое поле с определенной плотностью энергии, создавая ток там, где расположен проводник. Но если магнит покоится, а проводник движется, то в окрестности магнита никакое электрическое поле не возникает. В проводнике, однако, мы находим электродвижущую силу, для которой не существует соответствующей энергии самой по себе, но которая вызывает - предполагая равенство относительного движения в двух обсуждаемых случаях - электрические токи по тому же направлению и той же интенсивности, как в первом случае.

Примеры подобного рода вместе с неудачной попыткой обнаружить какое-либо движение Земли относительно «светоносной среды» предполагают, что явления электродинамики, а также механики не обладают свойствами, соответствующими идее абсолютного покоя.

- Альберт Эйнштейн , К электродинамике движущихся тел

Поток через поверхность и ЭДС в контуре

Закон электромагнитной индукции Фарадея использует понятие магнитного потока Φ B через замкнутую поверхность Σ, который определён через поверхностный интеграл :

Φ = ∬ S B n ⋅ d S , {\displaystyle \Phi =\iint \limits _{S}\mathbf {B_{n}} \cdot d\mathbf {S} ,}

где dS - площадь элемента поверхности Σ(t ), B - магнитное поле, а B ·d S - скалярное произведение B и d S . Предполагается, что поверхность имеет «устье», очерченное замкнутой кривой, обозначенной ∂Σ(t ). Закон индукции Фарадея утверждает, что когда поток изменяется, то при перемещении единичного положительного пробного заряда по замкнутой кривой ∂Σ совершается работа E {\displaystyle {\mathcal {E}}} , величина которой определяется по формуле:

| E | = | d Φ d t | , {\displaystyle |{\mathcal {E}}|=\left|{{d\Phi } \over dt}\right|\ ,}

где | E | {\displaystyle |{\mathcal {E}}|} - величина электродвижущей силы (ЭДС) в вольтах , а Φ B - магнитный поток в веберах . Направление электродвижущей силы определяется законом Ленца .

На рис. 4 показан шпиндель, образованный двумя дисками с проводящими ободами, и проводники, расположенные вертикально между этими ободами. ток скользящими контактами подается на проводящие обода. Эта конструкция вращается в магнитном поле, которое направлено радиально наружу и имеет одно и то же значение в любом направлении. т.е. мгновенная скорость проводников, ток в них и магнитная индукция, образуют правую тройку, что заставляет проводники вращаться.

Сила Лоренца

В этом случае на проводники действует Сила Ампера а на единичный заряд в проводнике Сила Лоренца - поток вектора магнитной индукции B , ток в проводниках, соединяющие проводящие обода, направлен нормально к вектору магнитной индукции, тогда сила действующая на заряд в проводнике будет равна

F = q B v . {\displaystyle F=qBv\,.}

где v = скорости движущегося заряда

Следовательно, сила действующая на проводники

F = I B ℓ , {\displaystyle {\mathcal {F}}=IB\ell ,}

где l длина проводников

Здесь мы использовали B как некую данность, на самом деле она зависит от геометрических размеров ободов конструкции и это значение можно вычислить используя Закон Био - Савара - Лапласа . Данный эффект используется и в другом устройстве называемом Рельсотрон

Закон Фарадея

Интуитивно привлекательный, но ошибочный подход к использованию правила потока выражает поток через цепь по формуле Φ B = B w ℓ, где w - ширина движущейся петли.

Ошибочность такого подхода в том что это не рамка в обычном понимании этого слова. прямоугольник на рисунке образован отдельными проводниками, замкнутыми на обод. Как видно на рисунке ток по обоим проводника течет в одном направлении, т.е. здесь отсутствует понятие "замкнутый контур"

Наиболее простое и понятное объяснение этому эффекту дает понятие сила Ампера . Т.е. вертикальный проводник может быть вообще один, чтобы не вводить в заблуждение. Или же проводник конечной толщины может быть расположен на оси соединяющие обода. Диаметр проводника должен быть конечным и отличатся от нуля чтобы момент силы Ампера был не нулевой.

Уравнение Фарадея - Максвелла

Переменное магнитное поле создаёт электрическое поле, описываемое уравнением Фарадея - Максвелла:

∇ × E = − ∂ B ∂ t {\displaystyle \nabla \times \mathbf {E} =-{\frac {\partial \mathbf {B} }{\partial t}}}

∇ × {\displaystyle \nabla \times } обозначает ротор E - электрическое поле B - плотность магнитного потока .

Это уравнение присутствует в современной системе уравнений Максвелла , часто его называют законом Фарадея. Однако, поскольку оно содержит только частные производные по времени, его применение ограничено ситуациями, когда заряд покоится в переменном по времени магнитном поле. Оно не учитывает [ ] электромагнитную индукцию в случаях, когда заряженная частица движется в магнитном поле.

В другом виде закон Фарадея может быть записан через интегральную форму теоремы Кельвина-Стокса :

∮ ∂ Σ ⁡ E ⋅ d ℓ = − ∫ Σ ∂ ∂ t B ⋅ d A {\displaystyle \oint _{\partial \Sigma }\mathbf {E} \cdot d{\boldsymbol {\ell }}=-\int _{\Sigma }{\partial \over {\partial t}}\mathbf {B} \cdot d\mathbf {A} }

Для выполнения интегрирования требуется независимая от времени поверхность Σ (рассматриваемая в данном контексте как часть интерпретации частных производных). Как показано на рис. 6:

Σ - поверхность, ограниченная замкнутым контуром ∂Σ , причём, как Σ , так и ∂Σ являются фиксированными, не зависящими от времени, E - электрическое поле, d - бесконечно малый элемент контура ∂Σ , B - магнитное поле , dA - бесконечно малый элемент вектора поверхности Σ .

Элементы d и dA имеют неопределённые знаки. Чтобы установить правильные знаки, используется правило правой руки , как описано в статье о теореме Кельвина-Стокса . Для плоской поверхности Σ положительное направление элемента пути d кривой ∂Σ определяется правилом правой руки, по которому на это направление указывают четыре пальца правой руки, когда большой палец указывает в направлении нормали n к поверхности Σ.

Интеграл по ∂Σ называется интеграл по пути или криволинейным интегралом . Поверхностный интеграл в правой части уравнения Фарадея-Максвелла является явным выражением для магнитного потока Φ B через Σ . Обратите внимание, что ненулевой интеграл по пути для E отличается от поведения электрического поля, создаваемого зарядами. Генерируемое зарядом E -поле может быть выражено как градиент скалярного поля , которое является решением уравнения Пуассона и имеет нулевой интеграл по пути.

Интегральное уравнение справедливо для любого пути ∂Σ в пространстве и любой поверхности Σ , для которой этот путь является границей.

D d t ∫ A B d A = ∫ A (∂ B ∂ t + v div B + rot (B × v)) d A {\displaystyle {\frac {\text{d}}{{\text{d}}t}}\int \limits _{A}{\mathbf {B} }{\text{ d}}\mathbf {A} =\int \limits _{A}{\left({\frac {\partial \mathbf {B} }{\partial t}}+\mathbf {v} \ {\text{div}}\ \mathbf {B} +{\text{rot}}\;(\mathbf {B} \times \mathbf {v})\right)\;{\text{d}}}\mathbf {A} }

и принимая во внимание div B = 0 {\displaystyle {\text{div}}\mathbf {B} =0} (Ряд Гаусса), B × v = − v × B {\displaystyle \mathbf {B} \times \mathbf {v} =-\mathbf {v} \times \mathbf {B} } (Векторное произведение) и ∫ A rot X d A = ∮ ∂ A ⁡ X d ℓ {\displaystyle \int _{A}{\text{rot}}\;\mathbf {X} \;\mathrm {d} \mathbf {A} =\oint _{\partial A}\mathbf {X} \;{\text{d}}{\boldsymbol {\ell }}} (теорема Кельвина - Стокса), мы находим, что полная производная магнитного потока может быть выражена

∫ Σ ∂ B ∂ t d A = d d t ∫ Σ B d A + ∮ ∂ Σ ⁡ v × B d ℓ {\displaystyle \int \limits _{\Sigma }{\frac {\partial \mathbf {B} }{\partial t}}{\textrm {d}}\mathbf {A} ={\frac {\text{d}}{{\text{d}}t}}\int \limits _{\Sigma }{\mathbf {B} }{\text{ d}}\mathbf {A} +\oint _{\partial \Sigma }\mathbf {v} \times \mathbf {B} \,{\text{d}}{\boldsymbol {\ell }}}

Добавляя член ∮ ⁡ v × B d ℓ {\displaystyle \oint \mathbf {v} \times \mathbf {B} \mathrm {d} \mathbf {\ell } } к обеим частям уравнения Фарадея-Максвелла и вводя вышеприведённое уравнение, мы получаем:

∮ ∂ Σ ⁡ (E + v × B) d ℓ = − ∫ Σ ∂ ∂ t B d A ⏟ induced emf + ∮ ∂ Σ ⁡ v × B d ℓ ⏟ motional emf = − d d t ∫ Σ B d A , {\displaystyle \oint \limits _{\partial \Sigma }{(\mathbf {E} +\mathbf {v} \times \mathbf {B})}{\text{d}}\ell =\underbrace {-\int \limits _{\Sigma }{\frac {\partial }{\partial t}}\mathbf {B} {\text{d}}\mathbf {A} } _{{\text{induced}}\ {\text{emf}}}+\underbrace {\oint \limits _{\partial \Sigma }{\mathbf {v} }\times \mathbf {B} {\text{d}}\ell } _{{\text{motional}}\ {\text{emf}}}=-{\frac {\text{d}}{{\text{d}}t}}\int \limits _{\Sigma }{\mathbf {B} }{\text{ d}}\mathbf {A} ,}

что и является законом Фарадея. Таким образом, закон Фарадея и уравнения Фарадея-Максвелла физически эквивалентны.

Рис. 7 показывает интерпретацию вклада магнитной силы в ЭДС в левой части уравнения. Площадь, заметаемая сегментом d кривой ∂Σ за время dt при движении со скоростью v , равна:

d A = − d ℓ × v d t , {\displaystyle d\mathbf {A} =-d{\boldsymbol {\ell \times v}}dt\ ,}

так что изменение магнитного потока ΔΦ B через часть поверхности, ограниченной ∂Σ за время dt , равно:

d Δ Φ B d t = − B ⋅ d ℓ × v = − v × B ⋅ d ℓ , {\displaystyle {\frac {d\Delta \Phi _{B}}{dt}}=-\mathbf {B} \cdot \ d{\boldsymbol {\ell \times v}}\ =-\mathbf {v} \times \mathbf {B} \cdot \ d{\boldsymbol {\ell }}\ ,}

и если сложить эти ΔΦ B -вклады вокруг петли для всех сегментов d , мы получим суммарный вклад магнитной силы в закон Фарадея. То есть этот термин связан с двигательной ЭДС.

Пример 3: точка зрения движущегося наблюдателя

Возвращаясь к примеру на рис. 3, в движущейся системе отсчета выявляется тесная связь между E - и B -полями, а также между двигательной и индуцированной ЭДС. Представьте себе наблюдателя, движущегося вместе с петлёй. Наблюдатель вычисляет ЭДС в петле с использованием как закона Лоренца, так и с использованием закона электромагнитной индукции Фарадея. Поскольку этот наблюдатель движется с петлей, он не видит никакого движения петли, то есть нулевую величину v × B . Однако, поскольку поле B меняется в точке x , движущийся наблюдатель видит изменяющееся во времени магнитного поля, а именно:

B = k B (x + v t) , {\displaystyle \mathbf {B} =\mathbf {k} {B}(x+vt)\ ,}

где k - единичный вектор в направлении z .

Закон Лоренца

Уравнение Фарадея-Максвелла говорит, что движущийся наблюдатель видит электрическое поле E y в направлении оси y , определяемое по формуле:

∇ × E = k d E y d x {\displaystyle \nabla \times \mathbf {E} =\mathbf {k} \ {\frac {dE_{y}}{dx}}} = − ∂ B ∂ t = − k d B (x + v t) d t = − k d B d x v , {\displaystyle =-{\frac {\partial \mathbf {B} }{\partial t}}=-\mathbf {k} {\frac {dB(x+vt)}{dt}}=-\mathbf {k} {\frac {dB}{dx}}v\ \ ,} d B d t = d B d (x + v t) d (x + v t) d t = d B d x v . {\displaystyle {\frac {dB}{dt}}={\frac {dB}{d(x+vt)}}{\frac {d(x+vt)}{dt}}={\frac {dB}{dx}}v\ .}

Решение для E y с точностью до постоянной, которая ничего не добавляет в интеграл по петле:

E y (x , t) = − B (x + v t) v . {\displaystyle E_{y}(x,\ t)=-B(x+vt)\ v\ .}

Используя закон Лоренца, в котором имеется только компонента электрического поля, наблюдатель может вычислить ЭДС по петле за время t по формуле:

E = − ℓ [ E y (x C + w / 2 , t) − E y (x C − w / 2 , t) ] {\displaystyle {\mathcal {E}}=-\ell } = v ℓ [ B (x C + w / 2 + v t) − B (x C − w / 2 + v t) ] , {\displaystyle =v\ell \ ,}

и мы видим, что точно такой же результат найден для неподвижного наблюдателя, который видит, что центр масс x C сдвинулся на величину x C + v t . Однако, движущийся наблюдатель получил результат под впечатлением, что в законе Лоренца действовала только электрическая составляющая, тогда как неподвижный наблюдатель думал, что действовала только магнитная составляющая.

Закон индукции Фарадея

Для применения закона индукции Фарадея рассмотрим наблюдателя, движущегося вместе с точкой x C . Он видит изменение магнитного потока, но петля ему кажется неподвижной: центр петли x C фиксирован, потому что наблюдатель движется вместе с петлей. Тогда поток:

Φ B = − ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 B (x + v t) d x , {\displaystyle \Phi _{B}=-\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}B(x+vt)dx\ ,}

где знак минуса возникает из-за того, что нормаль к поверхности имеет направление, противоположное приложенному полю B . Из закона индукции Фарадея ЭДС равна:

E = − d Φ B d t = ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 d d t B (x + v t) d x {\displaystyle {\mathcal {E}}=-{\frac {d\Phi _{B}}{dt}}=\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}{\frac {d}{dt}}B(x+vt)dx} = ∫ 0 ℓ d y ∫ x C − w / 2 x C + w / 2 d d x B (x + v t) v d x {\displaystyle =\int _{0}^{\ell }dy\int _{x_{C}-w/2}^{x_{C}+w/2}{\frac {d}{dx}}B(x+vt)\ v\ dx} = v ℓ [ B (x C + w / 2 + v t) − B (x C − w / 2 + v t) ] , {\displaystyle =v\ell \ \ ,}

и мы видим тот же результат. Производная по времени используется при интегрировании, поскольку пределы интегрирования не зависят от времени. Опять же, для преобразования производной по времени в производную по x используются методы дифференцирования сложной функции.

Неподвижный наблюдатель видит ЭДС как двигательную , тогда как движущийся наблюдатель думает, что это индуцированная ЭДС.

Электрический генератор

Явление возникновения ЭДС, порождённой по закону индукции Фарадея из-за относительного движения контура и магнитного поля, лежит в основе работы электрических генераторов . Если постоянный магнит перемещается относительно проводника или наоборот, проводник перемещается относительно магнита, то возникает электродвижущая сила. Если проводник подключён к электрической нагрузке, то через неё будет течь ток, и следовательно, механическая энергия движения будет превращаться в электрическую энергию. Например, дисковый генератор построен по тому же принципу, как изображено на рис. 4. Другой реализацией этой идеи является диск Фарадея , показанный в упрощённом виде на рис. 8. Обратите внимание, что и анализ рис. 5, и прямое применение закона силы Лоренца показывают, что твёрдый проводящий диск работает одинаковым образом.

В примере диска Фарадея диск вращается в однородном магнитном поле, перпендикулярном диску, в результате чего возникает ток в радиальном плече благодаря силе Лоренца. Интересно понять, как получается, что чтобы управлять этим током, необходима механическая работа. Когда генерируемый ток течёт через проводящий обод, по закону Ампера этот ток создаёт магнитное поле (на рис. 8 оно подписано «индуцированное B» - Induced B). Обод, таким образом, становится электромагнитом , который сопротивляется вращению диска (пример правила Ленца). В дальней части рисунка обратный ток течёт от вращающегося плеча через дальнюю сторону обода к нижней щётке. Поле В, создаваемое этим обратным током, противоположно приложенному полю, вызывая сокращение потока через дальнюю сторону цепи, в противовес увеличению потока, вызванного вращением. На ближней стороне рисунка обратный ток течёт от вращающегося плеча через ближнюю сторону обода к нижней щётке. Индуцированное поле B увеличивает поток по эту сторону цепи, в противовес снижению потока, вызванного вращением. Таким образом, обе стороны цепи генерируют ЭДС, препятствующую вращению. Энергия, необходимая для поддержания движения диска в противовес этой реактивной силе, в точности равна вырабатываемой электрической энергии (плюс энергия на компенсацию потерь из-за трения, из-за выделения тепла Джоуля и прочее). Такое поведение является общим для всех генераторов преобразования механической энергии в электрическую.

Хотя закон Фарадея описывает работу любых электрических генераторов, детальный механизм в разных случаях может отличаться. Когда магнит вращается вокруг неподвижного проводника, меняющееся магнитное поле создаёт электрическое поле, как описано в уравнении Максвелла-Фарадея, и это электрическое поле толкает заряды через проводник. Этот случай называется индуцированной ЭДС. С другой стороны, когда магнит неподвижен, а проводник вращается, на движущиеся заряды воздействует магнитная сила (как описывается законом Лоренца), и эта магнитная сила толкает заряды через проводник. Этот случай называется двигательной ЭДС.

Электродвигатель

Электрический генератор может работать в «обратном направлении» и становиться двигателем. Рассмотрим, например, диск Фарадея. Предположим, постоянный ток течёт через проводящее радиальное плечо от какого-либо напряжения. Тогда по закону силы Лоренца на этот движущийся заряд воздействует сила в магнитном поле B , которая будет вращать диск в направлении, определённым правилом левой руки. При отсутствии эффектов, вызывающих диссипативные потери, таких как трение или тепло Джоуля , диск будет вращаться с такой скоростью, чтобы d Φ B / dt было равно напряжению, вызывающему ток.

Электрический трансформатор

ЭДС, предсказанная законом Фарадея, является также причиной работы электрических трансформаторов. Когда электрический ток в проволочной петле изменяется, меняющийся ток создаёт переменное магнитное поле. Второй провод в доступном для него магнитном поле будет испытывать эти изменения магнитного поля как изменения связанного с ним магнитного потока d Φ B / d t . Электродвижущая сила, возникающая во второй петле, называется индуцированной ЭДС или ЭДС трансформатора . Если два конца этой петли связать через электрическую нагрузку, то через неё потечёт ток.

Закон электромагнитной индукции Фарадея.

Мы достаточно подробно рассмотрели три различных, на первый взгляд, варианта явления электромагнитной индукции, возникновения электрического тока в проводящем контуре под действием магнитного поля: при движении проводника в постоянном магнитном поле; при движении источника магнитного поля; при изменении во времени магнитного поля. Во всех этих случаях закон электромагнитной индукции одинаков:
 ЭДС электромагнитной индукции в контуре равна скорости изменения магнитного потока через контур, взятой с противоположным знаком

независимо от причин, приводящих к изменению этого потока.
 Уточним некоторые детали приведенной формулировки.
Первое . Магнитный поток через контур может изменяться произвольным образом, то есть функция Ф(t) не обязана всегда быть линейной, а может быть любой. Если магнитный поток изменяется по линейному закону, то ЭДС индукции в контуре постоянна, в этом случае величина интервала времени Δt может быть произвольной, значение отношения (1) в этом случае не зависит от величины этого интервала. Если же поток изменяется более сложным образом, то величина ЭДС не является постоянной, а зависит от времени. В этом случае рассматриваемый интервал времени следует считать бесконечно малым, тогда отношение (1) с математической точки зрения превращается в производную от функции магнитного потока по времени. Математически этот переход полностью аналогичен переходу от средней к мгновенной скорости в кинематике.
Второе . Понятие потока векторного поля применимо только к поверхности, поэтому необходимо уточнять о какой поверхности идет речь в формулировке закона. Однако, поток магнитного поля через любую замкнутую поверхность равен нулю. Поэтому для двух различных поверхностей, опирающихся на контур магнитные потоки одинаковы. Представьте себе поток жидкости, вытекающий из отверстия. Какую бы вы не выбрали поверхность, границей которого являются границы отверстия, потоки через них будут одинаковы. Здесь уместна еще одна аналогия: если работа силы по замкнутому контуру равна нулю, то работа этой силы не зависит от формы траектории, а определяется только ее начальной и конечной точками.
Третье . Знак минус в формулировке закона имеет глубокий физический смысл, фактически он обеспечивает выполнение закона сохранения энергии в этих явлениях. Этот знак является выражением правила Ленца. Пожалуй, это единственный случай в физике, когда один знак удостоился собственного имени.
 Как мы показали, во всех случаях физическая сущность явления электромагнитной индукции одинакова и кратко формулируется следующим образом: переменное магнитное поле порождает вихревое электрическое поле . С этой, полевой, точки зрения закон электромагнитной индукции выражается через характеристики электромагнитного поля:циркуляция вектора напряженности электрического поля по любому контуру равна скорости изменения магнитного потока через этот контур

В этой трактовке явления существенно, что вихревое электрическое поле возникает при изменении магнитного поля, независимо от того, имеется ли реальный замкнутый проводник (контур), в котором возникает ток или нет. Это реальный контур может играть роль прибора, для обнаружения индуцированного поля.
 Наконец, еще раз подчеркнем − электрические и магнитные поля относительны, то есть их характеристики зависят выбора системы отсчета, в которой дается их описание. Однако, этот произвол в выборе системы отсчета, в выборе способа описания не приводит к каким-либо противоречиям. Измеряемые физические величины инвариантны, не зависят от выбора системы отсчета. Например, сила, действующая на заряженное тело со стороны электромагнитного поля, не зависит от выбора системы отсчета. Но при ее описании в одних системах она может трактоваться как сила Лоренца, в других к ней может «добавляться» электрическая сила. Аналогично (даже как следствие) ЭДС индукции в контуре (сила индуцированного тока, количество выделившейся теплоты, возможная деформация контура и т.д.) не зависят от выбора системы отсчета.
 Как всегда предоставляемой свободой выбора можно и необходимо пользоваться − всегда есть возможность выбрать тот метод описания, который вам больше нравится − как наиболее простой, наиболее наглядный, наиболее привычный и т.д.

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока , пронизывающего контур.

Магнитным потоком Φ через площадь S контура называют величину

где B – модуль вектора магнитной индукции , α – угол между вектором и нормалью к плоскости контура (рис. 1.20.1).

Определение магнитного потока нетрудно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ называетсявебером (Вб). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м 2:

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула носит название закона Фарадея .

Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение, сформулированное в 1833 г., называется правилом Ленца .

Рис. 1.20.2 иллюстрирует правило Ленца на примере неподвижного проводящего контура, который находится в однородном магнитном поле, модуль индукции которого увеличивается во времени.

Правило Ленца отражает тот экспериментальный факт, что инд и всегда имеют противоположные знаки (знак «минус» в формуле Фарадея). Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.



Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам.

1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле перпендикулярное плоскости контура. Пусть одна из сторон контура длиной l скользит со скоростью по двум другим сторонам (рис. 1.20.3).

На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью зарядов, направлена вдоль проводника. Эта составляющая указана на рис. 1.20.3. Она играет роль сторонней силы. Ее модуль равен

По определению ЭДС

Для того, чтобы установить знак в формуле, связывающей инд и нужно выбрать согласованные между собой по правилу правого буравчика направление нормали и положительное направление обхода контура как это сделано на рис. 1.20.1 и 1.20.2. Если это сделать, то легко прийти к формуле Фарадея.

Если сопротивление всей цепи равно R , то по ней будет протекать индукционный ток, равный I инд = инд /R . За время Δt на сопротивлении R выделится джоулево тепло

Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера . Для случая, изображенного на рис. 1.20.3, модуль силы Ампера равен F A = I B l . Сила Ампера направлена навстречу движению проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа A мех равна

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение . Полная работа силы Лоренца равна нулю . Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не являетсяпотенциальным . Его называют вихревым электрическим полем . Представление о вихревом электрическом поле было введено в физику великим английским физикомДж. Максвеллом в 1861 г.

Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково , но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Содержание:

Если взять замкнутую проводящую систему и создать в ней условия для того чтобы магнитный поток изменился в магнитном поле, то в результате этих движений появится электрический ток. Данное обстоятельство описывает закон электромагнитной индукции Фарадея - английского ученого, который при проведении опытов добился превращения магнитной энергии в электричество. Оно получило название индукционного, поскольку до того времени его можно было создать лишь путем.

История открытия

Явление электромагнитной индукции было открыто сразу двумя учеными. Это были Майкл Фарадей и Джозеф Генри, сделавшие свое открытие в 1831 году. Публикация Фарадеем результатов проведенных экспериментов была сделана раньше его коллеги, поэтому индукцию связывают именно с этим ученым. В дальнейшем это понятие было включено в систему СГС.

Для демонстрации явления использовался железный тор, напоминающий конфигурацию современного трансформатора. Противоположные стороны его были обмотаны двумя проводниками с целью использования электромагнитных свойств.

К одному из проводов подключался ток, вызывающий своеобразную электрическую волну при прохождении сквозь тор, и некоторый электрический всплеск с противоположной стороны. Наличие тока было зафиксировано гальванометром. Точно такой же всплеск электричества наблюдался и в момент отключения провода.

Постепенно были обнаружены и другие формы проявления электромагнитной индукции. Кратковременное возникновение тока наблюдалось во время генерации его на медном диске, вращающемся возле магнита. На самом диске был установлен скользящий электропровод.

Наибольшие представление о том, что такое индуктивность, дал эксперимент с двумя катушками. Одна из них, с меньшими размерами, подключена к жидкостной батарее, расположенной на рисунке с правой стороны. Таким образом, через эту катушку начинает протекать электрический ток, под действием которого возникает магнитное поле.

Когда обе катушки находятся в неподвижном положении относительно друг друга, никаких явлений не происходит. Когда небольшая катушка начинает двигаться, то есть выходить из большой катушки или входить в нее, наступает изменение магнитного потока. В результате, в большой катушке наблюдается появление электродвижущей силы.

Открытие Фарадея доработал другой ученый - Максвелл, который обосновал его математически, отображая данное физическое явление дифференциальными уравнениями. Еще одному ученому-физику - удалось определить направление электротока и ЭДС, полученных под действием электромагнитной индукции.

Законы электромагнитной индукции

Сущность электромагнитной индукции определяется замкнутым контуром с электропроводностью, площадь которого пропускает через себя изменяющийся магнитный поток. В этот момент под влиянием магнитного потока появляется электродвижущая сила Еi и в контуре начинает течь электрический ток.

Закон Фарадея для электромагнитной индукции заключается в прямой зависимости ЭДС и скорости, составляющих пропорцию. Данная скорость представляет собой время, в течение которого магнитный поток подвергается изменениям.

Данный закон выражается формулой Еi = - ∆Ф/∆t, в которой Еi - значение электродвижущей силы, возникающей в контуре, а ∆Ф/∆t является скоростью изменения магнитного потока. В этой формуле не совсем понятным остается знак «минус», но ему тоже имеется свое объяснение. В соответствии с правилом русского ученого Ленца, изучавшего открытия Фарадея, этот знак отображает направление ЭДС, возникающей в контуре. То есть, направление индукционного тока происходит таким образом, что создаваемый им магнитный поток на площади, ограниченной контуром, препятствует изменениям, вызванным этим током.

Открытия Фарадея были доработаны Максвеллом, у которого теория электромагнитного поля получила новые направления. В результате, появился закон Фарадея и Максвелла, выраженный в следующих формулах:

  • Edl = -∆Ф/∆t - отображает электродвижущую силу.
  • Hdl = -∆N/∆t - отображает магнитодвижущую силу.

В этих формулах Е соответствует напряженности электрического поля на определенном участке dl, Н является напряженностью магнитного поля на этом же участке, N - поток электрической индукции, t - период времени.

Оба уравнения отличаются симметричностью, позволяющей сделать вывод, что магнитные и электрические явления связаны между собой. С физической точки зрения эти формулы определяют следующее:

  • Изменениям в электрическом поле всегда сопутствует образование магнитного поля.
  • Изменения в магнитном поле всегда происходят одновременно с образованием электрического поля.

Изменяющийся магнитный поток, проходящий сквозь замкнутую конфигурацию проводящего контура, приводит к возникновению в этом контуре электрического тока. Это основная формулировка закона Фарадея. Если изготовить проволочную рамку и поместить ее внутри вращающегося магнита, то в самой рамке появится электричество.

Это и будет индукционный ток, в полном соответствии с теорией и законом Майкла Фарадея. Изменения магнитного потока, проходящего через контур, могут быть произвольными. Следовательно, формула ∆Ф/∆t бывает не только линейной, а в определенных условиях принимает любую конфигурацию. Если изменения происходят линейно, то ЭДС электромагнитной индукции, возникающей в контуре, будет постоянной. Временной интервал t становится каким угодно, а отношение ∆Ф/∆t не будет зависеть от его продолжительности.

Если же принимают более сложную форму, то ЭДС индукции уже не будет постоянной, а будет зависеть от данного промежутка времени. В этом случае временной интервал рассматривается в качестве бесконечно малой величины и тогда соотношение ∆Ф/∆t с точки зрения математики станет производной от изменяющегося магнитного потока.

Существует еще один вариант, трактующий закон электромагнитной индукции Фарадея. Его краткая формулировка объясняет, что действие переменного магнитного поля вызывает появление вихревого электрического поля. Этот же закон можно трактовать как одну из характеристик электромагнитного поля: вектор напряженности поля может циркулировать по любому из контуров со скоростью, равной скорости изменения магнитного потока, проходящего через тот или иной контур.

В 1821 году Майкл Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена. В 1831 г. Майкл Фарадей установил, что во всяком замкнутом проводящем контуре при изменении потока магнитной индукции через поверхность, ограниченную этим контуром, возникает электрический ток. Это явление называется электромагнитной индукцией , а возникающий ток – индукционным (рис. 3.27).

Рис. 3.27 Опыты Фарадея

Индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции. Сила индукционного тока не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения.

Закон Фарадея: сила индукционного тока, возникающего в замкнутом проводящем контуре (ЭДС индукции, возникающая в проводнике), пропорциональна скорости изменения магнитного потока, сцепленного с контуром (проникающего через поверхность, ограниченную контуром), и не зависит от способа изменения магнитного потока.

Ленц установил правило, с помощью которого можно найти направление индукционного тока. Правило Ленца: индукционный ток направлен таким образом, что собственным магнитным полем препятствует изменению внешнего магнитного потока, пересекающего поверхность контура (рис. 3.28).

Рис. 3.28 Иллюстрация правила Ленца

Согласно закону Ома электрический ток в замкнутой цепи может возникать только в том случае, если в этой цепи появится ЭДС. Поэтому обнаруженный Фарадеем индукционный ток свидетельствует о том, что в замкнутом контуре, находящемся в переменном магнитном поле возникает ЭДС индукции. Дальнейшее исследование показало, что ЭДС электромагнитной индукции в контуре пропорционально изменению магнитного потока сквозь поверхность, ограниченную этим контуром.

Мгновенное значение ЭДС индукции выражается законом Фарадея-Ленца )

где – потокосцепление замкнутого проводящего контура.

Открытие явления электромагнитной индукции:

1. показало взаимосвязь между электрическим и магнитным полем;

2. предложило способ получения электрического тока с помощью магнитного поля.

Таким образом, возникновение ЭДС индукции возможно и в случае неподвижного контура , находящегося в переменном магнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому с ее помощью нельзя объяснить возникновение ЭДС индукции.

Опыт показывает, что ЭДС индукции не зависит от рода вещества проводника, от состояния проводника, в частности от его температуры, которая может быть даже неодинаковой вдоль проводника. Следовательно, сторонние силы связаны не с изменением свойств проводника в магнитном поле, а обусловлены самим магнитным полем.

Английский физик Максвелл для объяснения ЭДС индукции в неподвижных проводниках предположил, что переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле , которое и является причиной возникновения индукционного тока в проводнике. Вихревое электрическое поле не является электростатическим (т. е. потенциальным).

ЭДС электромагнитной индукции возникает не только в замкнутом проводнике с током, но и в отрезке проводника, пересекающем при своем движении линии магнитной индукции (рис. 3.29).

Рис. 3.29 Образование ЭДС индукции в движущемся проводнике

Пусть прямолинейный отрезок проводника длиной l движется слева направо скоростью v (рис. 3.29). Индукция магнитного поля В направлена от нас. Тогда на электроны, движущиеся со скоростью v действует сила Лоренца

Под действием этой силы электроны будут смещаться к одному из концов проводника. Следовательно, возникает разность потенциалов и электрическое поле внутри проводника с напряженностью E . Со стороны возникшего электрического поля на электроны будет действовать сила qE , направление которой противоположно силе Лоренца. Когда эти силы уравновесят друг друга, то движение электронов прекратится.

Цепь разомкнута, значит , но в проводнике нет гальванического элемента или других источников тока, значит, это будет ЭДС индукции

.

При перемещении в магнитном поле замкнутого проводящего контура ЭДС индукции находится во всех его участках, пересекающих линии магнитной индукции. Алгебраическая сумма этих ЭДС равна общей ЭДС индукции замкнутого контура.

Для описания процессов в физике и химии есть целый ряд законов и соотношений, полученных экспериментальным и расчетным путем. Ни единого исследования нельзя провести без предварительной оценки процессов по теоретическим соотношениям. Законы Фарадея применяются и в физике, и в химии, а в этой статье мы постараемся кратко и понятно рассказать о всех знаменитых открытиях этого великого ученого.

История открытия

Закон Фарадея в электродинамике был открыт двумя ученными: Майклом Фарадеем и Джозефом Генри, но Фарадей опубликовал результаты своих работ раньше – в 1831 году.

В своих демонстрационных экспериментах в августе 1831 г. он использовал железный тор, на противоположные концы которого был намотан провод (по одному проводу на стороны). На концы одного первого провода он подал питание от гальванической батареи, а на выводы второго подключил гальванометр. Конструкция была похожа на современный трансформатор. Периодически включая и выключая напряжение на первом проводе, он наблюдал всплески на гальванометре.

Гальванометр — это высокочувствительный прибор для измерения силы токов малой величины.

Таким образом было изображено влияние магнитного поля, образовавшегося в результате протекания тока в первом проводе, на состояние второго проводника. Это воздействие передавалось от первого ко второму через сердечник – металлический тор. В результате исследований было обнаружено и влияние постоянного магнита, который двигается в катушке, на её обмотку.

Тогда Фарадей объяснял явление электромагнитной индукции с точки зрения силовых линий. Еще одной была установка для генерирования постоянного тока: медный диск вращался вблизи магнита, а скользящий по нему провод был токосъёмником. Это изобретение так и называется — диск Фарадея.

Ученные того периода не признали идеи Фарадея, но Максвелл взял исследования для основы своей магнитной теории. В 1836 г. Майкл Фарадей установил соотношения для электрохимических процессов, которые назвали Законами электролиза Фарадея. Первый описывает соотношения выделенной на электроде массы вещества и протекающего тока, а второй соотношения массы вещества в растворе и выделенного на электроде, для определенного количества электричества.

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или , мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора. В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле). Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Электролиз

Кроме исследований ЭДС и электромагнитной индукции ученный сделал большие открытия и в других дисциплинах, в том числе химии.

При протекании тока через электролит ионы (положительные и отрицательные) начинают устремляться к электродам. Отрицательные движутся к аноду, положительные к катоду. При этом на одном из электродов выделяется определенная масса вещества, которое содержится в электролите.

Фарадей проводил эксперименты, пропуская разный ток через электролит и измеряя массу вещества отложившегося на электродах, вывел закономерности.

m – масса вещества, q – заряд, а k – зависит от состава электролита.

А заряд можно выразить через ток за промежуток времени:

I=q/t , тогда q = i*t

Теперь можно определить массу вещества, которое выделится, зная ток и время, которое он протекал. Это называется Первый закон электролиза Фарадея.

Второй закон:

Масса химического элемента, который осядет на электроде, прямо пропорциональна эквивалентной массе элемента (молярной массе разделенной на число, которое зависит от химической реакции, в которой участвует вещество).

С учетом вышесказанного эти законы объединяются в формулу:

m – масса вещества, которое выделилось в граммах, n – количество переносимых электронов в электродном процессе, F=986485 Кл/моль – число Фарадея, t – время в секундах, M молярная масса вещества г/моль.

В реальности же из-за разных причин, масса выделяемого вещества меньше чем расчетная (при расчетах с учетом протекающего тока). Отношение теоретической и реальной масс называют выходом по току:

B т = 100% * m расч /m теор

Законы Фарадея внесли существенный вклад в развитие современной науки, благодаря его работам мы имеем электродвигатели и генераторы электроэнергии (а также работам его последователей). Работа ЭДС и явления электромагнитной индукции подарили нам большую часть современного электрооборудования, в том числе и громкоговорители и микрофоны, без которых невозможно прослушивание записей и голосовая связь. Процессы электролиза применяются в гальваническом методе покрытия материалов, что несет как декоративную ценность, так и практическую.

Похожие материалы:

Нравится(0 ) Не нравится(0 )