Углеродные нанотрубки - это чудо природы. Углеродные нанотрубки


Считается, что первооткрывателем углеродных нанотрубок является сотрудник японской корпорации NEC Сумио Ииджима, который в 1991 году наблюдал структуры многослойных нанотрубок при изучении под электронным микроскопом осадков, которые образовывались в процессе синтеза молекулярных форм чистого углерода, имеющего клеточную структуру.

Классификация

Основная классификация нанотрубок проводится по количеству составляющих их слоев.

Однослойные нанотрубки (single-walled nanotubes, SNWTs) - простейший вид нанотрубок. Большинство из них имеют диаметр около 1 нм при длине, которая может быть во много тысяч раз больше. Структуру однослойных нанотрубок можно представить как «обертывание» гексагональной сетки графита (графена), основу которой составляют шестиугольники с расположенными в вершинах углов атомами углерода, в бесшовный цилиндр. Верхние концы трубок закрыты полусферическими крышечками, каждый слой которых составлен из шести- и пятиугольников, напоминающих структуру половины молекулы фуллерена.

Рисунок 1. Графическое изображение однослойной нанотрубки

Многослойные нанотрубки (multi-walled nanotubes, MWNTs) состоят из нескольких слоев графена, сложенных в форме трубки. Расстояние между слоями равно 0.34 нм, то есть такое же, как и между слоями в кристаллическом графите.

Существуют две модели, использующиеся для описания их структуры. Многослойные нанотрубки могут представлять собой несколько однослойных нанотрубок, вложенных одна в другую (так называемая «матрешка»). В другом случае, один «лист» графена оборачивается несколько раз вокруг себя, что похоже на прокрутку пергамента или газеты (модель «пергамента»).

Рисунок 2. Графическое изображение многослойной нанотрубки (модель «матрешка»)

Методы синтеза

Наиболее распространенными методами синтеза нанотрубок являются электродуговой метод, лазерная абляция и химическое осаждение из газовой фазы (CVD).

Дуговой разряд (Arc discharge) — сущность этого метода состоит в получении углеродных нанотрубок в плазме дугового разряда, горящей в атмосфере гелия, на технологических установках для получения фуллеренов. Однако здесь используются другие режимы горения дуги: низкие плотности тока дугового разряда, более высокое давление гелия (~ 500 Торр), катоды большего диаметра.

Для увеличения выхода нанотрубок в продуктах распыления в графитовый стержень вводится катализатор (смеси металлов группы железа), изменяется давление инертного газа и режима распыления.

В катодном осадке содержание нанотрубок достигает 60%. Образующиеся нанотрубки длиной до 40 мкм растут от катода перпендикулярно его поверхности и объединяются в цилиндрические пучки диаметром около 50 км.

Лазерная абляция (Laser ablation)

Этот метод был изобретен Ричардом Смалли и сотрудниками Rice University» и основан на испарении графитовой мишени в высокотемпературной реакторе. Нанотрубки появляются на охлажденной поверхности реактора как конденсат испарения графита. Водоохлаждаемая поверхность может быть включена в систему сбора нанотрубок.

Выход продукта в этом методе - около 70%. С его помощью получают преимущественно однослойные углеродные нанотрубки с контролируемым посредством температуры реакции диаметром. Однако стоимость данного метода намного дороже остальных.

Химическое осаждение из газовой фазы (Chemical vapor deposition, CVD)

Метод каталитического осаждения паров углерода был выявлен еще в 1959 году, однако до 1993 года никто не предполагал, что в этом процессе можно получить нанотрубки.

В процессе этого метода готовится подложка со слоем катализатора - частиц металла (чаще всего никеля, кобальта, железа или их комбинаций). Диаметр нанотрубок, выращенных таким способом, зависит от размера металлических частиц.

Подложка нагревается примерно до 700 оС. Для инициации роста нанотрубок в реактор вводят два типа газов: технологический газ (например, аммиак, азот, водород и т. д.) и углеродосодержащий газ (ацитилен, этилен, этанол, метан и т. д.). Нанотрубки начинают расти на участках металлических катализаторов.

Этот механизм является наиболее распространенным коммерческим методом производства углеродных нанотрубок. Среди других методов получения нанотрубок CVD наиболее перспективен в промышленных масштабах благодаря наилучшему соотношению в плане цены на единицу продукции. Кроме того, он позволяет получать вертикально ориентированные нанотрубки на желаемом субстрате без дополнительного сбора, а также контролировать их рост посредством катализатора.

Области применения

Углеродные нанотрубки вместе с фуллеренами и мезопористыми углеродными структурами образуют новый класс углеродных наноматериалов, или углеродных каркасных структур, со свойствами, которые значительно отличаются от других форм углерода, таких как графит и алмаз. Однако наиболее перспективными их них являются именно нанотрубки.

Интересуетесь бизнесом в области наноматериалов? Тогда Вас могут заинтересовать

И другими похожими структурами, которые можно назвать общим термином углеродные каркасные структуры . Что же это такое?

Углеродные каркасные структуры - это большие (а иногда и гигантские!) молекулы, состоящие исключительно из атомов углерода. Можно даже говорить, что углеродные каркасные структуры - это новая аллотропная форма углерода (в дополнение к давно известным: алмазу и графиту). Главная особенность этих молекул - это их каркасная форма: они выглядят как замкнутые, пустые внутри "оболочки". Самая знаменитая из углеродных каркасных структур - это фуллерен C 60 , абсолютно неожиданное открытие которого в 1985 году вызвало целый бум исследований в этой области (Нобелевская премия по химии за 1996 год была присуждена именно первооткрывателям фуллеренов Роберту Керлу, Гарольду Крото и Ричарду Смалли). В конце 80-х, начале 90-х годов, после того как была разработана методика получения фуллеренов в макроскопических количествах, было обнаружено множество других, как более легких, так и более тяжелых фуллеренов: начиная от C 20 (минимально возможного из фуллеренов) и до C 70 , C 82 , C 96 , и выше.

Однако разнообразие углеродных каркасных структур на этом не заканчивается. В 1991 году, опять-таки совершенно неожиданно, были обнаружены длинные, цилиндрические углеродные образования, получившие названия нанотрубок. Визуально структуру таких нанотрубок можно представить себе так: берем графитовую плоскость, вырезаем из нее полоску и "склеиваем" ее в цилиндр (предостережение: такое сворачивание графитовой плоскости - это лишь способ представить себе структуру нанотрубки; реально нанотрубки растут совсем по-другому). Казалось бы, что проще - берешь графитовую плоскость и сворачиваешь в цилиндр! - однако до экспериментального открытия нанотрубок никто из теоретиков их не предсказывал! Так что ученым оставалось только изучать их - и удивляться!

А удивительного было много. Во-первых, разнообразие форм: нанотрубки могли быть большие и маленькие, однослойные и многослойные, прямые и спиральные. Во-вторых, несмотря на кажущуюся хрупкость и даже ажурность, нанотрубки оказались на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений , превышающих критические, нанотрубки также ведут себя экстравагантно: они не "рвутся" и не "ломаются", а просто-напросто перестраиваются! Далее, нанотрубки демонстрируют целый спектр самых неожиданных электрических, магнитных, оптических свойств. Например, в зависимости от конкретной схемы сворачивания графитовой плоскости, нанотрубки могут быть и проводниками , и полупроводниками ! Может ли какой-либо иной материал с таким простым химическим составом похвастаться хотя бы частью тех свойств, которыми обладают нанотрубки?!

Наконец, поражает разнообразие применений, которые уже придуманы для нанотрубок. Первое, что напрашивается само собой, это применение нанотрубок в качестве очень прочных микроскопических стержней и нитей. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали! Правда, в настоящее время максимальная длина нанотрубок составляет десятки и сотни микронов - что, конечно, очень велико по атомным масштабам, но слишком мало для повседневного использования. Однако длина нанотрубок, получаемых в лаборатории, постепенно увеличивается - сейчас ученые уже вплотную подошли к миллиметровому рубежу: см. работу [Z. Pan et al, 1998 ], где описан синтез многослойной нанотрубки длиной в 2 мм. Поэтому есть все основания надеяться, что в скором будущем ученые научатся выращивать нанотрубки длиной в сантиметры и даже метры! Безусловно, это сильно повлияет на будущие технологии: ведь "трос" толщиной с человеческий волос, способный удерживать груз в сотни килограмм, найдет себе бесчисленное множество применений.

Другой пример, когда нанотрубка является частью физического прибора - это "насаживание" ее на острие сканирующего туннельного или атомного силового микроскопа . Обычно такое острие представляет собой остро заточенную вольфрамовую иглу, но по атомным меркам такая заточка все равно достаточно грубая. Нанотрубка же представляет собой идеальную иглу диаметром порядка нескольких атомов. Прикладывая определенное напряжение, можно подхватывать атомы и целые молекулы, находящиеся на подложке непосредственно под иглой, и переносить их с места на место.

Необычные электрические свойства нанотрубок сделают их одним из основных материалов наноэлектроники. Уже сейчас созданы опытные образцы полевых транзисторов на основе одной нанотрубки: прикладывая запирающее напряжение в несколько вольт, ученые научились изменять проводимость однослойных нанотрубок на 5 порядков!

Еще одно применение в наноэлектронике - создание полупроводниковых гетероструктур, т.е. структур типа металл/полупроводник или стык двух разных полупроводников. Теперь для изготовления такой гетероструктуры не надо будет выращивать отдельно два материала и затем "сваривать" их друг с другом. Все, что требуется, это в процессе роста нанотрубки создать в ней структурный дефект (а именно, заменить один из углеродных шестиугольников пятиугольником). Тогда одна часть нанотрубки будет металлической, а другая - полупроводником!

Разработано уже и несколько применений нанотрубок в компьютерной индустрии. Например, созданы и опробованы прототипы тонких плоских дисплеев, работающих на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя. Получающееся при этом зерно изображения будет фантастически малым: порядка микрона!

С помощью того же атомного микроскопа можно производить запись и считывание информации с матрицы, состоящей из атомов титана, лежащих на -Al 2 O 3 подложке. Эта идея уже также реализована экспериментально: достигнутая плотность записи информации составляла 250 Гбит/см 2 . Однако в обоих этих примерах до массового применения пока далеко - слишком уж дорого обходятся такие наукоемкие новшества. Поэтому одна из самых главных задач здесь - разработать дешевую методику реализации этих идей.

Пустоты внутри нанотрубок (и углеродных каркасных структур вообще) также привлекали внимание ученых. В самом деле, а что будет, если внутрь фуллерена поместить атом какого-нибудь вещества? Эксперименты показали, что интеркаляция (т.е. внедрение) атомов различных металлов меняет электрические свойства фуллеренов и может даже превратить изолятор в сверхпроводник ! А можно ли таким же образом изменить свойства нанотрубок? Оказывается, да. В работе [K.Hirahara et al, 2000 ] ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния ! Электрические свойства такой необычной структуры сильно отличались как от свойств простой, полой нанотрубки, так и от свойств нанотрубки с пустыми фуллеренами внутри. Как, оказывается, много значит валентный электрон , отдаваемый атомом металла во всеобщее распоряжение! Кстати, интересно отметить, что для таких соединений разработаны специальные химические обозначения. Описанная выше структура записывается как [email protected] 60 @SWNT, что означает "Gd внутри C 60 внутри однослойной нанотрубки (Single Wall NanoTube)".

В нанотрубки можно не только "загонять" атомы и молекулы поодиночке, но и буквально "вливать" вещество. Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами , то есть она как бы втягивает в себя вещество. Таким образом, нанотрубки можно использовать как микроскопические контейнеры для перевозки химически или биологически активных веществ: белков , ядовитых газов, компонентов топлива и даже расплавленных металлов. Попав внутрь нанотрубки, атомы или молекулы уже не могут выйти наружу: концы нанотрубок надежно "запаяны", а углеродное ароматическое кольцо слишком узкое для большинства атомов. В таком виде активные атомы или молекулы можно безопасно транспортировать. Попав в место назначения, нанотрубки раскрываются с одного конца (а операции "запаивания" и "распаивания" концов нанотрубок уже вполне под силу современной технологии) и выпускают свое содержимое в строго определенных дозах. Это - не фантастика, эксперименты такого рода уже сейчас проводятся во многих лабораториях мира. И не исключено, что через 10-20 лет на базе этой технологии будет проводиться лечение заболеваний: скажем, больному вводят в кровь заранее приготовленные нанотрубки с очень активными ферментами , эти нанотрубки собираются в определенном месте организма некими микроскопическими механизмами и "вскрываются" в определенный момент времени. Современная технология уже практически готова к реализации...

Министерство образования и науки Российской Федерации

Федеральное государственное учреждение высшего профессионального образования

Российский химико-технологический университет им. Д. И. Менделеева

Факультет нефтегазохимии и полимерных материалов

Кафедра химической технологии углеродных материалов


ОТЧЕТ ПО ПРАКТИКЕ

на тему УГЛЕРОДНЫЕ НАНОТРУБКИ И НАНОВОЛКНА


Выполнил: Маринин С. Д.

Проверил: доктор химических наук, Бухаркина Т. В.


Москва, 2013 г.


Введение


Сфера нанотехнологий считается во всем мире ключевой темой для технологий XXI века. Возможности их разностороннего применения в таких областях экономики, как производство полупроводников, медицина, сенсорная техника, экология, автомобилестроение, строительные материалы, биотехнологии, химия, авиация и космонавтика, машиностроение и текстильная промышленность, несут в себе огромный потенциал роста. Применение продукции нанотехнологий позволит сэкономить на сырье и потреблении энергии, сократить выбросы в атмосферу и будет способствовать тем самым устойчивому развитию экономики.

Разработками в сфере нанотехнологий занимается новая междисциплинарная область - нанонаука, одним из направлений которой является нанохимия. Нанохимия возникла на стыке веков, когда казалось, что в химии уже все открыто, все понятно и остается только использовать на благо общества приобретенные знания.

Химики всегда знали и хорошо понимали значение атомов и молекул как основных «кирпичиков» огромного химического фундамента. В то же время развитие новых методов исследования, таких как электронная микроскопия, высокоселективная масс-спектроскопия, в сочетании со специальными методами приготовления образцов позволило получать информацию о частицах, содержащих небольшое, менее сотни, количество атомов.

У подобных частиц размером около 1 нм (10-9 м - это всего лишь миллиметр, поделенный на миллион) обнаружены необычные, труднопредсказуемые химические свойства.

Наиболее известными и понятными для большинства людей являются следующие такие наноструктуры, как фуллерены, графен, углеродные нанотрубки и нановолокна. Все они состоят из атомов углерода, связанных между собой, но форма их существенно различается. Графен представляет собой плоскость, монослой, «покрывало» из атомов углерода в SP2 гибридизации. Фуллерены - замкнутые многоугольники, чем-то напоминающие футбольный мяч. Нанотрубки - цилиндрические полые объемные тела. Нановолокна могут представлять собой конусы, цилиндры, чаши.В своей работе я постараюсь осветить именно нанотрубки и нановолокна.


Строение нанотрубок и нановолокон


Что такое углеродные нанотрубки? Углеродные нанотрубки это углеродный материал, представляющий собой цилиндрические структуры с диаметром порядка нескольких нанометров, состоящие из свернутых в трубку графитовых плоскостей. Графитовая плоскость представляет собой непрерывную гексагональную сетку с атомами углерода в вершинах шестиугольников. Углеродные нанотрубки могут различаться по длине, диаметру, хиральности (симметрии свернутой графитовой плоскости) и по количеству слоев. Хиральность <#"280" src="doc_zip1.jpg" />



Одностенные нанотрубки. Однослойные углеродные нанотрубки (ОСУНТ) - подвид углеродных нановолокон со структурой, образованной сворачиванием графена в цилиндр с соединением его сторон без шва. Сворачивание графена в цилиндр без шва возможно только конечным числом способов, отличающихся направлением двумерного вектора, который соединяет две эквивалентные точки на графене, совпадающие при его сворачивании в цилиндр. Этот вектор называется вектором хиральностиоднослойной углеродной нанотрубки. Таким образом, однослойные углеродные нанотрубки различаются диаметром и хиральностью. Диаметр однослойных нанотрубок, по экспериментальным данным, варьируется от ~ 0,7 нм до ~ 3-4 нм. Длина однослойной нанотрубки может достигать 4 см. Существуют три формы ОСУНТ: ахиральные типа «кресла» (две стороны каждого шестиугольника ориентированы перпендикулярно оси УНТ), ахиральные типа «зигзаг» (две стороны каждого шестиугольника ориентированы параллельно оси УНТ) и хиральные или спиралевидные (каждая сторона шестиугольника расположена к оси УНТ под углом, отличные от 0 и 90º). Так, ахиральные УНТ типа «кресла» характеризуют индексами (n,n), типа «зигзаг» - (n,0), хиральные - (n,m).

Многостенные нанотрубки. Многослойные углеродные нанотрубки (МСУНТ) - подвид углеродных нановолокон со структурой, образованной несколькими вложенными друг в друга однослойными углеродными нанотрубками (см. Рис.2). Внешний диаметр многослойных нанотрубок варьируется в широких пределах от нескольких нанометров до десятков нанометров.

Число слоев в МСУНТ чаще всего составляет не больше 10, но в отдельных случаях достигает нескольких десятков.

Иногда среди многослойных нанотрубок выделяют как особый вид двухслойные нанотрубки. Структура типа «русской матрёшки» (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга цилиндрических трубок. Другая разновидность этой структуры представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур напоминает свиток (scroll). Для всех структур на рис. характерно значение расстояния между соседними графеновыми слоями, близкое к величине 0,34 нм, присущей расстоянию между соседними плоскостями кристаллического графита <#"128" src="doc_zip3.jpg" />


Русская матрешка Рулон Папье-маше


Углеродные нановолокна (УНВ) представляют собой класс таких материалов, в которых изогнутые графеновые слои или наноконусы сложены в форме одномерной нити, чья внутренняя структура может быть охарактеризована углом? между слоями графена и осью волокна. Одно из распространенных различий отмечается между двумя основными типами волокон: «Елочка», с плотно уложенными коническими графеновыми слоями и большими?, и «Бамбук», с цилиндрическими чашеподобными графеновыми слоями и малыми?, которые больше похожи на многослойные углеродные нанотрубки <#"228" src="doc_zip4.jpg" />


а - нановолокно "столбик монет";

б - нановолокно "елочной структуры" (стопка конусов, "рыбья кость");

в - нановолокно "стопка чашек" ("ламповые абажуры");

г - нанотрубка "русская матрешка";

д - бамбукообразное нановолокно;

е - нановолокно со сферическими секциями;

ж - нановолокно с полиэдрическими секциями

Выделение в отдельный подвид углеродных нанотрубок обусловлено тем, что их свойства заметно отличаются в лучшую сторону от свойств других типов углеродных нановолокон. Это объясняется тем, что графеновый слой, образующий стенку нанотрубки вдоль всей ее длины, имеет высокие прочность на разрыв, тепло- и электропроводность. В противоположность этому в углеродных нановолокнах при движении вдоль стенки встречаются переходы с одного графенового слоя на другой. Наличие межслоевых контактов и высокая дефектность структуры нановолокон существенно ухудшает их физические характеристики.


История


Трудно говорить об истории нанотрубок и нановолокон отдельно, ведь эти продукты часто сопутствуют друг другу при синтезе. Одним из первых данных о получении углеродных нановолокон, вероятно, является патент от 1889 на получение трубчатых форм углерода, образующихся при пиролизе смеси СН4 и Н2 в железном тигле Хьюзом и Чамберсом. Они использовали смесь метана и водорода для выращивания углеродных нитей путем пиролиза газа с последующим осаждением углерода. Говорить о получении этих волокон наверняка, стало возможно гораздо позже, когда появилась возможность изучить их структуру с помощью электронного микроскопа. Первое наблюдение углеродных нановолокон с помощью электронной микроскопии было сделано в начале 1950-х годов советскими учеными Радушкевичем и Лукьяновичем, которые опубликовали статью в советском Журнале физической химии, в которой показали полые графитовые волокна углерода, которые составляли 50 нанометров в диаметре. В начале 1970-х годов, японским исследователям Кояме и Эндо удалось получить углеродные волокна осаждением из газовой фазы (VGCF) с диаметром 1 мкм и длиной более 1 мм. Позднее, в начале 1980-х, Тиббетс в США и Бениссад во Франции продолжили совершенствовать процесс получения углеродных волокон (VGCF). В США, более глубокие исследования, посвященные синтезу и свойствам этих материалов для практического применения, проводились Р. Терри К. Бейкером и были мотивированы необходимостью подавлять рост углеродных нановолокон из-за постоянных проблем вызванных накоплением материала в различных коммерческих процессах, особенно в области переработки нефти. Первая попытка коммерциализации углеродных волокон выращенных из газовой фазы была предпринята японской компанией Nikosso в 1991 году под торговой маркой Grasker, в том же году Иджима опубликовал свою знаменитую статью, сообщающую об открытии углеродных нанотрубок <#"justify">Получение


В настоящее время, в основном, используются синтезы на основе пиролиза углеводородов и возгонки и десублимации графита.

Возгонка-десублимация графита может быть реализована в нескольких вариантах:

  • электродуговой способ,
  • лучевое нагревание (использование солнечных концентраторов или лазерного излучения),
  • лазерно-термический,
  • нагревание электронным или ионным пучком,
  • возгонка в плазме,
  • резистивное нагревание.

Многие из указанных вариантов имеют свои разновидности. Иерархия части вариантов электродугового способа приведена на схеме:


В настоящее время наиболее распространённым является метод термического распыления графитовых электродов в плазме дугового разряда. Процесс синтеза осуществляется в камере, заполненной гелием под давлением около 500 мм рт. ст. При горении плазмы происходит интенсивное термическое испарение анода, при этом на торцевой поверхности катода образуется осадок, в котором формируются нанотрубки углерода. Максимальное количество нанотрубок образуется тогда, когда ток плазмы минимален и его плотность около 100 А/см2. В экспериментальных установках напряжение между электродами составляет около 15-25 В, ток разряда несколько десятков ампер, расстояние между концами графитовых электродов 1-2 мм. В процессе синтеза около 90% массы анода осаждается на катоде. Образующиеся многочисленные нанотрубки имеют длину около 40 мкм. Они нарастают на катоде перпендикулярно плоской поверхности его торца и собраны в цилиндрические пучки диаметром около 50 мкм.

Пучки нанотрубок регулярно покрывают поверхность катода, образую сотовую структуру. Содержание нанотрубок в углеродном осадке около 60%. Для разделения компонентов полученный осадок помещают в метанол и обрабатывают ультразвуком. В результате получается суспензия, которая после добавления воды подвергается разделению в центрифуге. Крупные частицы прилипают к стенкам центрифуги, а нанотрубки остаются плавающими в суспензии. Затем нанотрубки промывают в азотной кислоте и просушивают в газообразном потоке кислорода и водорода в соотношении 1:4 при температуре 7500 C в течение 5 минут. В результате такой обработки получается лёгкий пористый материал, состоящий из многочисленных нанотрубок со средним диаметром 20 нм и длиной 10 мкм. Пока максимальная достигнутая длина нановолокна - 1 см.


Пиролиз углеводородов


По выбору исходных реагентов и способам ведения процессов эта группа имеет значительно большее число вариантов, чем методы возгонки и десублимации графита. Она обеспечивает более четкое управление процессом образования УНТ, в большей степени подходит для крупномасштабного производства и позволяет производить не только сами углеродные наноматериалы, но и определенные структуры на подложках, макроскопические волокна, состоящие из нанотрубок, а также композиционные материалы, в частности, модифицированные углеродными УНТ углеродные волокна и углеродную бумагу, керамические композиты. С использованием недавно разработанной наносферной литографии удалось получить фотонные кристаллы из УНТ. Таким путем можно выделять УНТ определенного диаметра и длины.

К достоинствам пиролитического метода, кроме того, относится возможность его реализации для матричного синтеза, например с использованием пористых мембран из оксида алюминия или молекулярных сит. С помощью оксида алюминия удается получать разветвленные УНТ и мембраны из УНТ. Главными недостатками матричного метода являются высокая стоимость многих матриц, их малые размеры и необходимость применения активных реагентов и жестких условий для растворения матриц.

Чаще других для синтеза УНТ и УНВ используются процессы пиролиза трех углеводородов: метана, ацетилена и бензола, а также термическое разложение (диспропорционирование) СО. Метан, как и оксид углерода, не склонен к разложению при низких температурах (некаталитическое разложение метана начинается при ~900 оС), что позволяет синтезировать ОУНТ с относительно небольшим количеством примеси аморфного углерода. Оксид углерода не разлагается при низких температурах по другой причине: кинетической. Разница в поведении различных веществ видна на рис. 94.

К преимуществам метана перед другими углеводородами и оксидом углерода относится то, что его пиролиз с образованием УНТ или УНВ сочетается с выделением Н2 и может быть использован в уже действующих производствах Н2.


Катализаторы


Катализаторами процессов образования УНТ и УНВ служат Fe, Co и Ni; промоторами, которые вводятся в меньших количествах, выступают преимущественно Mo, W или Cr (реже - V, Mn, Pt и Pd), носителями катализаторов - нелетучие оксиды и гидроксиды металлов (Mg, Ca, Al, La, Si, Ti, Zr), твердые растворы, некоторые соли и минералы (карбонаты, шпинели, перовскиты, гидротальцит, природные глины, диатомиты), молекулярные сита (в частности, цеолиты), силикагель, аэрогель, алюмогель, пористый Si и аморфный C. При этом V, Cr, Mo, W, Mn и, вероятно, некоторые другие металлы в условиях проведения пиролиза находятся в виде соединений - оксидов, карбидов, металлатов и др.

В качестве катализаторов могут применяться благородные металлы (Pd, Ru, PdSe), сплавы (мишметалл, пермаллой, нихром, монель, нержавеющая сталь, Co-V, Fe-Cr, Fe-Sn, Fe-Ni-Cr, Fe-Ni-C, Co-Fe-Ni, твердый сплав Co-WC и др.), CoSi2 и CoGe2, LaNi5, MmNi5 (Mm - мишметалл), сплавы Zr и других гидридообразующих металлов. Напротив, Au и Ag ингибируют образование УНТ.

Катализаторы могут наноситься на кремний, покрытый тонкой оксидной пленкой, на германий, некоторые виды стекла и подложки из других материалов.

Идеальным носителем катализаторов считается пористый кремний, получаемый электрохимическим травлением монокристаллического кремния в растворе определенного состава. Пористый кремний может содержать микропоры (< 2 нм), мезопоры и макропоры (> 100 нм). Для получения катализаторов используют традиционные методы:

  • смешение (реже спекание) порошков;
  • напыление или электрохимическое осаждение металлов на подложку с последующим превращением сплошной тонкой пленки в островки наноразмеров (применяют также послойное напыление нескольких металлов;
  • химическое осаждение из газовой фазы;
  • окунание подложки в раствор;
  • нанесение суспензии с частицами катализатора на подложку;
  • нанесение раствора на вращающуюся подложку;
  • пропитка инертных порошков солями;
  • соосаждение оксидов или гидроксидов;
  • ионный обмен;
  • коллоидные методы (золь-гель процесс, метод обратных мицелл);
  • термическое разложение солей;
  • сжигание нитратов металлов.

Помимо описанных выше двух групп, разработано большое число других методов получения УНТ. Классифицировать их можно по используемым источникам углерода. Исходными соединениями служат: графит и другие формы твердого углерода, органические соединения, неорганические соединения, металлоорганические соединения. Графит может быть превращен в УНТ несколькими путями: интенсивным шаровым помолом с последующим высокотемпературным отжигом; электролизом расплавленных солей; расщеплением на отдельные графеновые листки и последующим самопроизвольным скручиванием этих листков. Аморфный углерод может быть превращен в УНТ при обработке в гидротермальных условиях. Из технического углерода (сажа) УНТ получались при высокотемпературной трансформации в присутствии катализаторов или без них, а также при взаимодействии с водяным паром под давлением. Нанотрубчатые структуры содержатся в продуктах вакуумного отжига (1000 оС) пленок алмазоподобного углерода в присутствии катализатора. Наконец, каталитическая высокотемпературная трансформация фуллерита С60 или его обработка в гидротермальных условиях также ведут к образованию УНТ.

Углеродные нанотрубки существуют в природе. Группа мексиканских исследователей обнаружила их в образцах нефти, извлеченных с глубины 5,6 км (Веласко-Сантос, 2003). Диаметр УНТ составлял от нескольких нанометров до десятков нанометров, длина достигала 2 мкм. Некоторые из них были заполнены различными наночастицами.


Очистка углеродных нанотрубок


Ни один из распространенных способов получения УНТ не позволяет выделить их в чистом виде. Примесями к НТ могут быть фуллерены, аморфный углерод, графитизированные частицы, частицы катализатора.

Применяют три группы методов очистки УНТ:

  1. разрушающие,
  2. неразрушающие,
  3. комбинированные.

Разрушающие методы используют химические реакции, которые могут быть окислительными или восстановительными и основаны на различиях в реакционной способности различных углеродных форм. Для окисления используют либо растворы окислителей, либо газообразные реагенты, для восстановления - водород. Методы позволяют выделять УНТ высокой чистоты, но связаны с потерями трубок.

Неразрушающие методы включают экстрагирование, флокуляцию и селективное осаждение, микрофильтрацию с перекрестным током, вытеснительную хроматографию, электрофорез, селективное взаимодействие с органическими полимерами. Как правило, эти методы малопроизводительны и неэффективны.


Свойства углеродных нанотрубок


Механические.Нанотрубки, как было сказано, являются на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений, превышающих критические, нанотрубки не "рвутся", а перестраиваются. Основываясь на таком свойстве нанотрубок как высокая прочность, можно утверждать, что они являются наилучшим материалом для троса космического лифта на данный момент. Как показывают результаты экспериментов и численного моделирования, модуль Юнга однослойной нанотрубки достигает величин порядка 1-5 ТПа, что на порядок больше, чем у стали. Приведённый ниже график показывает сравнение однослойной нанотрубки и высокопрочной стали.



Трос космического лифта по подсчётам должен выдерживать механическое напряжение 62,5 ГПа

Диаграмма растяжения (зависимость механического напряжения ? от относительного удлинения ?)

Чтобы продемонстрировать существенное различие между самыми прочными на текущий момент материалами и углеродными нанотрубками, проведём следующий мысленный эксперимент. Представим, что, как это предполагалось ранее, тросом для космического лифта будет служить некая клиновидная однородная структура, состоящая из самых прочных на сегодняшний день материалов, то диаметр троса у GEO (geostationary Earth orbit) будет около 2 км и сузится до 1 мм у поверхности Земли. В этом случае общая масса составит 60*1010 тонн. Если бы в качестве материала использовались углеродные нанотрубки, то диаметр троса у GEO составил 0,26 мм и 0,15 мм у поверхности Земли, в связи с чем общая масса была 9,2 тонн. Как видно из вышеуказанных фактов, углеродное нановолокно - это как раз тот материал, который необходим при постройке троса, реальный диаметр которого составит около 0,75 м, чтобы выдержать также электромагнитную систему, использующуюся для движения кабины космического лифта.

Электрические.Вследствие малых размеров углеродных нанотрубок только в 1996 году удалось непосредственно измерить их удельное электрическое сопротивление четырёхконтактным способом.

На полированную поверхность оксида кремния в вакууме наносили золотые полоски. В промежуток между ними напыляли нанотрубки длиной 2-3 мкм. Затем на одну из выбранных для измерения нанотрубок наносили 4 вольфрамовых проводника толщиной 80 нм. Каждый из вольфрамовых проводников имел контакт с одной из золотых полосок. Расстояние между контактами на нанотрубке составляло от 0,3 до 1 мкм. Результаты прямого измерения показали, что удельное сопротивление нанотрубок может изменяться в значительных пределах - от 5,1*10-6 до 0,8 Ом/см. Минимальное удельное сопротивление на порядок ниже, чем у графита. Большая часть нанотрубок обладает металлической проводимостью, а меньшая проявляет свойства полупроводника с шириной запрещённой зоны от 0,1 до 0,3 эВ.

Французскими и российскими исследователями (из ИПТМ РАН, Черноголовка) было открыто ещё одно свойство нанотрубок, как сверхпроводимость. Они проводили измерения вольт-амперных характеристик отдельной однослойной нанотрубки диаметром ~1нм, свернутого в жгут большого числа однослойных нанотрубок, а также индивидуальных многослойных нанотрубок. Сверхпроводящий ток при температуре, близкой к 4К, наблюдался между двумя сверхпроводящими металлическими контактами. Особенности переноса заряда в нанотрубке существенно отличаются от тех, которые присущи обычным, трехмерным проводникам и, по-видимому, объясняются одномерным характером переноса.

Также де Гиром из Университета Лозанны (Швейцария) было обнаружено интересное свойство: резкое (около двух порядков величины) изменение проводимости при небольшом, на 5-10о, изгибе однослойной нанотрубки. Это свойство может расширить область применения нанотрубок. С одной стороны, нанотрубка оказывается готовым высокочувствительным преобразователем механических колебаний в электрический сигнал и обратно (фактически это - телефонная трубка длиной в несколько микрон и диаметром около нанометра), а, с другой стороны, это - практически готовый датчик мельчайших деформаций. Такой датчик мог бы найти применение в устройствах, контролирующих состояние механических узлов и деталей, от которых зависит безопасность людей, например, пассажиров поездов и самолетов, персонала атомных и тепловых электростанций и т. п.

Капиллярные. Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами. Чтобы открыть нанотрубку, надо удалить верхнюю часть - крышечку. Один из способов удаления заключается в отжиге нанотрубок при температуре 8500 C в течение нескольких часов в потоке углекислого газа. В результате окисления около 10% всех нанотрубок оказываются открытыми. Другой способ разрушения закрытых концов нанотрубок - выдержка в концентрированной азотной кислоте в течение 4,5 часов при температуре 2400 C. В результате такой обработки 80% нанотрубок становятся открытыми.

Первые исследования капиллярных явлений показали, что жидкость проникает внутрь канала нанотрубки, если её поверхностное натяжение не выше 200 мН/м. Поэтому для ввода каких-либо веществ внутрь нанотрубок используют растворители, имеющие низкое поверхностное натяжение. Так, например, для ввода в канал нанотрубки некоторых металлов используют концентрированную азотную кислоту, поверхностное натяжение которой невелико (43 мН/м). Затем проводят отжиг при 4000 C в течение 4 часов в атмосфере водорода, что приводит к восстановлению металла. Таким образом были получены нанотрубки, содержащие никель, кобальт и железо.

Наряду с металлами углеродные нанотрубки могут заполняться газообразными веществами, например водородом в молекулярном виде. Эта способность имеет практическое значение, ибо открывает возможность безопасного хранения водорода, который можно использовать в качестве экологически чистого топлива в двигателях внутреннего сгорания. Также ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния(см. Рис.5).


Рис. 5. Внутри C60 внутри однослойной нанотрубки


Капиллярные эффекты и заполнение нанотрубок

нанотрубка углеродный пиролиз электродуговой

Вскоре после открытия углеродных нанотрубок внимание исследователей привлекла возможность заполнения нанотрубок различными веществами, что не только представляет научный интерес, но также имеет большое значение для прикладных задач, поскольку нанотрубку, заполненную проводящим, полупроводящим или сверхпроводящим материалом, можно рассматривать как наиболее миниатюрный из всех известных к настоящему времени элементов микроэлектроники. Научный интерес к данной проблеме связан с возможностью получения экспериментально обоснованного ответа на вопрос: при каких минимальных размерах капиллярные явления сохраняют свои особенности, присущие макроскопическим объектам? Впервые данная проблема рассмотрена в задачи о втягивании молекулы НР внутрь нанотрубок под действием поляризационных сил. При этом показано, что капиллярные явления, приводящие к втягиванию жидкостей, смачивающих внутреннюю поверхность трубки, внутрь капилляра, сохраняют свою природу при переходе к трубкам нанометрового диаметра.

Капиллярные явления в углеродных нанотрубках впервые осуществлены экспериментально в работе, где наблюдался эффект капиллярного втягивания расплавленного свинца внутрь нанотрубок. В этом эксперименте электрическая дуга, предназначенная для синтеза нанотрубок зажигалась между электродами диаметром 0,8 и длиной 15 см при напряжении 30 В и токе 180 - 200 А. Образующийся на поверхности катода в результате термического разрушения поверхности анода слой материала высотой 3-4 см извлекался из камеры и выдерживался в течение 5 ч при Т = 850° С в потоке углекислого газа. Эта операция, в результате которой образец потерял около 10% массы, способствовала очистке образца от частиц аморфного графита и открытию нанотрубок, находящихся в осадке. Центральная часть осадка, содержащего нанотрубки, помещалась в этанол и обрабатывалась ультразвуком. Диспергированный в хлороформе продукт окисления наносился на углеродную ленту с отверстиями для наблюдения с помощью электронного микроскопа. Как показали наблюдения, трубки, не подвергавшиеся обработке, имели бесшовную структуру, головки правильной формы и диаметр от 0,8 до 10 нм. В результате окисления около 10% нанотрубок оказались с поврежденными шапочками, а часть слоев вблизи вершины была содрана. Предназначенный для наблюдений образец, содержащий нанотрубки, заполнялся в вакууме каплями расплавленного свинца, которые получали в результате облучения металлической поверхности электронным пучком. При этом на внешней поверхности нанотрубок наблюдались капельки свинца размером от 1 до 15 нм. Нанотрубки отжигались в воздухе при Т = 400°С (выше температуры плавления свинца) в течение 30 мин. Как показывают результаты наблюдений, выполненных с помощью электронного микроскопа, часть нанотрубок после отжига оказалась заполненной твердым материалом. Аналогичный эффект заполнения нанотрубок наблюдался при облучении головок трубок, открывающихся в результате отжига, мощным электронным пучком. При достаточно сильном облучении материал вблизи открытого конца трубки плавится и проникает внутрь. Наличие свинца внутри трубок установлено методами рентгеновской дифракции и электронной спектроскопии. Диаметр самого тонкого свинцового провода составлял 1,5 нм. Согласно результатам наблюдений число заполненных нанотрубок не превышало 1%.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Одностенные нанотрубки

Структура одностенных нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы.

Особое место среди одностенных нанотрубок занимают так называемые armchair-нанотрубки или нанотрубки с хиральностью (10, 10). В нанотрубках такого типа две из С-С связей, входящих в состав каждого шестичленного кольца, ориентированы параллельно продольной оси трубки. Нанотрубки с подобной структурой должны обладать чисто металлической структурой.

Многостенные нанотрубки

Многостенные (multi-walled) нанотрубки отличаются от одностенных значительно более широким разнообразием форм и конфигураций. Разнообразие структур проявляется как в продольном, так и в поперечном направлении.

Структура типа «русской матрёшки» (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга цилиндрических трубок. Другая разновидность этой структуры представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур напоминает свиток (scroll). Для всех структур характерно значение расстояния между соседними графитовыми слоями, близкое к величине 0,34 нм, присущей расстоянию между соседними плоскостями кристаллического графита.

Реализация той или иной структуры многостенных нанотрубок в конкретной экспериментальной ситуации зависит от условий синтеза. Анализ имеющихся экспериментальных данных указывает, что наиболее типичной структурой многостенных нанотрубок является структура с попеременно расположенными по длине участками типа «русской матрёшки» и «папье-маше». При этом «трубки» меньшего размера последовательно вложены в трубки большего размера.

Получение углеродных нанотрубок

Развитие методов синтеза углеродных нанотрубок (УНТ) шло по пути снижения температур синтеза. После создания технологии получения фуллеренов было обнаружено, что при электродуговом испарении графитовых электродов наряду с образованием фуллеренов образуются протяженные цилиндрические структуры. Микроскопист Сумио Ииджима, используя просвечивающий электронный микроскоп (ПЭМ) первым идентифицировал эти структуры, как нанотрубки. К высокотемпературным методам получения УНТ относятся электродуговой метод. Если испарить графитовый стержень (анод) в электрической дуге, то на противоположном электроде (катоде) образуется жесткий углеродный нарост (депозит) в мягкой сердцевине которого содержатся многостенные УНТ с диаметром 15-20 нм и длиной более 1 мкм. Формирование УНТ из фуллереновой сажи при высокотемпературном тепловом воздействии на сажу впервые наблюдали Оксфордская и Швейцарская группа. Установка для электродугового синтеза металлоемка, энергозатратна, но универсальна для получения различных типов углеродных наноматериалов. При этом существенной проблемой является неравновесность процесса при горении дуги. Электродуговой метод в свое время пришел на смену метода лазерного испарения (абляции) лучем лазера. Установка для абляции представляет собой обычную печь с резистивным нагревом, дающую температуру 1200С. Чтобы получить в ней более высокие температуры, достаточно поместить в печь мишень из углерода и направить на нее лазерный луч, попеременно сканируя всю поверхность мишени.

Т.о. группа Смолли, используя дорогостоящие установки с короткоимпульсным лазером, получила в 1995 г. нанотрубки, "значительно упростив" технологию их синтеза. Однако, выход УНТ оставался низким. Введение в графит небольших добавок никеля и кобальта позволило увеличить выход УНТ до 70-90%. С этого момента начался новый этап в представлении о механизме образования нанотрубок. Стало очевидным, что металл является катализатором роста. Так появились первые работы по получению нанотрубок низкотемпературным методом - методом каталитического пиролиза углеводородов (CVD), где в качестве катализатора использовались частицы металла группы железа. Один из варианов установки по получению нанотрубок и нановолокон CVD методом представляет собой реактор, в который подается инертный газ-носитель, уносящий катализатор и углеводород в зону высоких температур. Упрощенно механизм роста УНТ заключается в следующем. Углерод, образующийся при термическом разложении углеводорода, растворяется в наночастице металла.

При достижении высокой концентрации углерода в частице на одной из граней частицы-катализатора происходит энергетически выгодное "выделение" избыточного углерода в виде искаженной полуфулереновой шапочки. Так зарождается нанотрубка. Разложившийся углерод продолжает поступать в частицу катализатора, и для сброса избытка его концентрации в расплаве нужно постоянно избавляться от него. Поднимающаяся полусфера (полуфуллерен) с поверхности расплава, увлекает за собой растворенный избыточный углерод, атомы которого вне расплава образуют связь С-С представляющую собой цилиндрический каркас-нанотрубку. Температура плавления частицы в наноразмерном состоянии зависит от ее радиуса. Чем меньше радиус, тем ниже температура плавления. Поэтому, наночастицы железа, с размером порядка 10 нм находятся в расплавленном состоянии ниже 600С. На данный момент осуществлен низкотемпературный синтез УНТ методом каталитического пиролиза ацетилена в присутствии частиц Fe при 550С. Снижение температуры синтеза имеет и негативные последствия. При более низких температурах получаются УНТ с большим диаметром (около 100 нм) и сильно дефектной структурой типа "бамбук" или вложенные наноконусы. Полученные материалы только состоят из углерода, но к экстраординарным характеристикам (например, модуль Юнга) наблюдаемым у одностенных углеродных нанотрубок, получаемых методом лазерной абляции или электродуговым синтезом, они даже близко не приближаются.

Благодаря своим уникальным свойствам углеродные нанотрубки являются привлекательным объектом фундаментальной науки с одной стороны, а с другой – широкими перспективами прикладного использования.

5.1. Механические свойства нанотрубок

Нанотрубки обладают аномально высокой прочностью на растяжение, изгиб и кручение.

Механическое напряжение S в трубке определяется как отношение нагрузки W к поперечному сечению трубки A: . Относительная деформация ε определяется как отношение удлинения ΔL трубки к ее длине L перед нагружением: ε=ΔL/L. Согласно закону Гука напряжение σ пропорционально относительной деформации: σ=Еε. Коэффициент пропорциональности E=LW/AΔL называется модулем Юнга и является свойством конкретного материала, характеризующим его упругость. Чем больше значение модуля Юнга, тем более материал податлив. Модуль Юнга углеродных нанотрубок составляет от 1.28 до 1.8 ТПа, в то время как модуль Юнга стали почти в 10 раз меньше (0.21 ТПа). Это подразумевает, что углеродная нанотрубка очень жесткая и трудносгибаемая. Однако это не так из-за того, что нанотрубки очень тонкие. Отклонение пустого цилиндрического стержня длиной L, внутренним радиусомr i и внешним радиусом r 0 под действием силы F, приложенной к его концу нормально оси, дается выражением: D=FL 3 /3EI, где I=π(r 0 4 - r i 4)/4 - момент инерции сечения стержня. Так как толщина стенки однослойной нанотрубки составляет - 0.34 нм, значение r 0 4 – r i 4 очень мало, что компенсирует большое значение модуля Юнга.

Углеродные нанотрубки очень упруги при изгибе. Они не ломаются и могут распрямиться без повреждений, т.к. имеют мало структурных дефектов (дислокаций, границ зерен). Кроме того, углеродные кольца стенок в виде правильных шестиугольников при изгибе меняют свою структуру. Это является следствием того факта, что углерод-углеродные связи sр 2 -гибридизованы и могут перегибридизоваться при изгибе.

Предел прочности характеризует необходимое для разрыва напряжение. Предел прочности однослойной углеродной нанотрубки составляет 45 ГПа, в то время как для стали он составляет 2 ГПа. Многослойные нанотрубки тоже имеют лучшие, чем у стали, механические свойства, но они меньше, чем у однослойных нанотрубок. Например, многослойная нанотрубка диаметром 200 нм имеет предел прочности 7 ГПа и модуль Юнга 0.6 ТПа.

В таблице 1 приведены основные механические характеристики однослойных углеродных нанотрубок в сравнении с известными материалами.

Таблица 1.

Материал

Модули упругости, ГПа

Сопротивление

на разрыв, ГПа

Плотность, г/cм 3

Однослойная углеродная нанотрубка

Графитовый

стержень

Алюминий

5.2. Проводимость углеродных нанотрубок

Измерение проводимости индивидуальных нанотрубок представляет собой довольно трудную задачу. Приходится применять атомно-силовой микроскоп, и оказывается, что сопротивление металлических нанотрубок составляет ~ 1–10 кОм. Это сопротивление соответствует баллистическому механизму переноса заряда, при котором электрон преодолевает кусок трубки примерно в 1 мкм без рассеивания, так как это происходит в вакууме. Проводимость нанотрубок зависит не только от хиральности, но и от дефектов структуры и наличия присоединённых радикалов (ОН, СО и др.).

Кроме того, проводимость нанотрубки чрезвычайно чувствительна к степени ее изгиба. Например, проводимость прямолинейного участка однослойной нанотрубки, не испытывающей внешней нагрузки, при комнатной температуре составляет ~ 100 мкСм, что соответствует сопротивлению 10 кОм. По порядку величины это значение сравнимо с величиной единичного кванта проводимости 4е 2 /h=154 мкСм, который соответствует баллистическому механизму переноса заряда (электроны преодолевают длину нанотрубки без рассеяния). В результате изгиба нанотрубки на угол 105° ее проводимость уменьшается в 100 раз, достигая значения ~ 1 мкСм. Изучение температурной зависимости проводимости изогнутого участка нанотрубки позволило установить, что через место изгиба электрон туннелирует (рис. 18). Поэтому, изгибая трубку, можно создать в ней туннельный переход и приборы на его основе.

Если нанотрубка обладает полупроводниковыми свойствами, то ее сопротивление составляет десятки МОм, и оно не распределено равномерно по длине, как у нормального проводника, а сосредоточено в «барьерах», расположенных примерно через каждые 100 нм вдоль длины нанотрубки.

Согласно полученным экспериментальным данным сопротивление многослойной нанотрубки с хорошей точностью описывается соотношением;

,

где р ≈ 700 Ом/см – удельное сопротивление нанотрубки; L – длина нанотрубки; D – диаметр нанотрубки.

Такое поведение сопротивления указывает на небаллистический характер переноса заряда. Поэтому многослойная нанотрубка представляет собой двумерный проводник длиной L и толщиной D.

В зависимости от хирального угла нанотрубка может обладать либо металлическими, либо полупроводниковыми свойствами. При этом такая важная характеристика электронных свойств полупроводящей нанотрубки, как ширина запрещенной зоны ε g , определяется ее геометрическими параметрами: индексами хиралькости и диаметром (рис. 19).