Как найти нетривиальное и фундаментальное решение системы линейных однородных уравнений. Найти общее решение системы и фср


Пусть М 0 – множество решений однородной системы (4) линейных уравнений.

Определение 6.12. Векторы с 1 , с 2 , …, с p , являющиеся решениями однородной системы линейных уравнений называются фундаментальным набором решений (сокращенно ФНР), если

1) векторы с 1 , с 2 , …, с p линейно независимы (т. е. ни один из них нельзя выразить через другие);

2) любое другое решение однородной системы линейных уравнений можно выразить через решения с 1 , с 2 , …, с p .

Заметим, что если с 1 , с 2 , …, с p – какой-либо ф.н.р., то выражением k 1 ×с 1 + k 2 ×с 2 + … + k p ×с p можно описать все множество М 0 решений системы (4), поэтому его называют общим видом решения системы (4).

Теорема 6.6. Любая неопределенная однородная система линейных уравнений обладает фундаментальным набором решений.

Способ нахождения фундаментального набора решений состоит в следующем:

Найти общее решение однородной системы линейных уравнений;

Построить (n r ) частных решений этой системы, при этом значения свободных неизвестных должны образовывать единичную матрицу;

Выписать общий вид решения, входящего в М 0 .

Пример 6.5. Найти фундаментальный набор решений следующей системы:

Решение . Найдем общее решение этой системы.

~ ~ ~ ~ Þ Þ Þ В этой системе пять неизвестных (n = 5), из них главных неизвестных два (r = 2), свободных неизвестных три (n r ), то есть в фундаментальном наборе решений содержится три вектора решения. Построим их. Имеем x 1 и x 3 – главные неизвестные, x 2 , x 4 , x 5 – свободные неизвестные

Значения свободных неизвестных x 2 , x 4 , x 5 образуют единичную матрицу E третьего порядка. Получили, что векторы с 1 , с 2 , с 3 образуют ф.н.р. данной системы. Тогда множество решений данной однородной системы будет М 0 = {k 1 ×с 1 + k 2 ×с 2 + k 3 ×с 3 , k 1 , k 2 , k 3 Î R}.

Выясним теперь условия существования ненулевых решений однородной системы линейных уравнений, другими словами условия существования фундаментального набора решений.

Однородная система линейных уравнений имеет ненулевые решения, то есть является неопределенной, если

1) ранг основной матрицы системы меньше числа неизвестных;

2) в однородной системе линейных уравнений число уравнений меньше числа неизвестных;

3) если в однородной системе линейных уравнений число уравнений равно числу неизвестных, и определитель основной матрицы равен нулю (т. е. |A | = 0).

Пример 6.6 . При каком значении параметра a однородная система линейных уравнений имеет ненулевые решения?

Решение . Составим основную матрицу этой системы и найдем ее определитель: = = 1×(–1) 1+1 × = –а – 4. Определитель этой матрицы равен нулю при a = –4.

Ответ : –4.

7. Арифметическое n -мерное векторное пространство

Основные понятия

В предыдущих разделах уже встречалось понятие о наборе из действительных чисел, расположенных в определенном порядке. Это матрица-строка (или матрица-столбец) и решение системы линейных уравнений с n неизвестными. Эти сведения можно обобщить.

Определение 7.1. n -мерным арифметическим вектором называется упорядоченный набор из n действительных чисел.

Значит а = (a 1 , a 2 , …, a n ), где a i Î R, i = 1, 2, …, n – общий вид вектора. Число n называется размерностью вектора, а числа a i называются его координатами .

Например: а = (1, –8, 7, 4, ) – пятимерный вектор.

Все множество n -мерных векторов принято обозначать как R n .

Определение 7.2. Два вектора а = (a 1 , a 2 , …, a n ) и b = (b 1 , b 2 , …, b n ) одинаковой размерности равны тогда и только тогда, когда равны их соответствующие координаты, т. е. a 1 = b 1 , a 2 = b 2 , …, a n = b n .

Определение 7.3. Суммой двух n -мерных векторов а = (a 1 , a 2 , …, a n ) и b = (b 1 , b 2 , …, b n ) называется вектор a + b = (a 1 + b 1 , a 2 + b 2 , …, a n + b n ).

Определение 7.4. Произведением действительного числа k на вектор а = (a 1 , a 2 , …, a n ) называется вектор k ×а = (k ×a 1 , k ×a 2 , …, k ×a n )

Определение 7.5. Вектор о = (0, 0, …, 0) называется нулевым (или нуль–вектором ).

Легко проверить, что действия (операции) сложения векторов и умножения их на действительное число обладают следующими свойствами: " a , b , c Î R n , " k , l Î R:

1) a + b = b + a ;

2) a + (b + c ) = (a + b ) + c ;

3) a + о = a ;

4) a + (–a ) = о ;

5) 1×a = a , 1 Î R;

6) k ×(l ×a ) = l ×(k ×a ) = (l ×k a ;

7) (k + l a = k ×a + l ×a ;

8) k ×(a + b ) = k ×a + k ×b .

Определение 7.6. Множество R n с заданными на нем операциями сложения векторов и умножения их на действительное число называется арифметическим n-мерным векторным пространством .

Метод Гаусса имеет ряд недостатков: нельзя узнать, совместна система или нет, пока не будут проведены все преобразования, необходимые в методе Гаусса; метод Гаусса не пригоден для систем с буквенными коэффициентами.

Рассмотрим другие методы решения систем линейных уравнений. Эти методы используют понятие ранга матрицы и сводят решение любой совместной системы к решению системы, к которой применимо правило Крамера.

Пример 1. Найти общее решение следующей системы линейных уравнений с помощью фундаментальной системы решений приведенной однородной системы и частного решения неоднородной системы.

1. Составляем матрицу A и расширенную матрицу системы (1)

2. Исследуем систему (1) на совместность. Для этого находим ранги матриц A и https://pandia.ru/text/78/176/images/image006_90.gif" width="17" height="26 src=">). Если окажется, что , то система (1) несовместна. Если же получим, что , то эта система совместна и мы ее будем решать. (Исследование на совместность основано на теореме Кронекера-Капелли).

a. Находим rA .

Чтобы найти rA , будем рассматривать последовательно отличные от нуля миноры первого, второго и т. д. порядков матрицы A и окаймляющие их миноры.

М1 =1≠0 (1 берем из левого верхнего угла матрицы А ).

Окаймляем М1 второй строкой и вторым столбцом этой матрицы. . Продолжаем окаймлять М1 второй строкой и третьим столбцом..gif" width="37" height="20 src=">. Теперь окаймляем отличный от нуля минор М2′ второго порядка.

Имеем: (т. к. два первых столбца одинаковые)

(т. к. вторая и третья строки пропорциональны).

Мы видим, что rA=2 , а - базисный минор матрицы A .

b. Находим .

Достаточно базисный минор М2′ матрицы A окаймить столбцом свободных членов и всеми строками (у нас только последней строкой).

. Отсюда следует, что и М3′′ остается базисным минором матрицы https://pandia.ru/text/78/176/images/image019_33.gif" width="168 height=75" height="75">(2)

Так как М2′ - базисный минор матрицы A системы (2) , то эта система эквивалентна системе (3) , состоящей из первых двух уравнений системы (2) (ибо М2′ находится в первых двух строках матрицы A).

(3)

Так как базисный минор https://pandia.ru/text/78/176/images/image021_29.gif" width="153" height="51">(4)

В этой системе два свободных неизвестных (x2 и x4 ). Поэтому ФСР системы (4) состоит из двух решений. Чтобы их найти, придадим свободным неизвестным в (4) сначала значения x2=1 , x4=0 , а затем – x2=0 , x4=1 .

При x2=1 , x4=0 получим:

.

Эта система уже имеет единственное решение (его можно найти по правилу Крамера или любым другим способом). Вычитая из второго уравнения первое, получим:

Ее решением будет x1= -1 , x3=0 . Учитывая значения x2 и x4 , которые мы придали, получаем первое фундаментальное решение системы (2) : .

Теперь полагаем в (4) x2=0 , x4=1 . Получим:

.

Решаем эту систему по теореме Крамера:

.

Получаем второе фундаментальное решение системы (2) : .

Решения β1 , β2 и составляют ФСР системы (2) . Тогда ее общим решением будет

γ= С1β1+С2β2=С1(‑1, 1, 0, 0)+С2(5, 0, 4, 1)=(‑С1+5С2, С1, 4С2, С2)

Здесь С1 , С2 – произвольные постоянные.

4. Найдем одно частное решение неоднородной системы (1) . Как и в пункте 3 , вместо системы (1) рассмотрим эквивалентную ей систему (5) , состоящую из первых двух уравнений системы (1) .

(5)

Перенесем в правые части свободные неизвестные x2 и x4 .

(6)

Придадим свободным неизвестным x2 и x4 произвольные значения, например, x2=2 , x4=1 и подставим их в (6) . Получим систему

Эта система имеет единственное решение (т. к. ее определитель М2′0 ). Решая ее (по теореме Крамера или методом Гаусса), получим x1=3 , x3=3 . Учитывая значения свободных неизвестных x2 и x4 , получим частное решение неоднородной системы (1) α1=(3,2,3,1).

5. Теперь осталось записать общее решение α неоднородной системы (1) : оно равно сумме частного решения этой системы и общего решения ее приведенной однородной системы (2) :

α=α1+γ=(3, 2, 3, 1)+(‑С1+5С2, С1, 4С2, С2).

Это значит: (7)

6. Проверка. Чтобы проверить, правильно ли вы решили систему (1) , надо общее решение (7) подставить в (1) . Если каждое уравнение обратится в тождество (С1 и С2 должны уничтожиться), то решение найдено верно.

Мы подставим (7) для примера только в последнее уравнение системы (1) (x 1 + x 2 + x 3 ‑9 x 4 =‑1) .

Получим: (3–С1+5С2)+(2+С1)+(3+4С2)–9(1+С2)=–1

(С1–С1)+(5С2+4С2–9С2)+(3+2+3–9)=–1

Откуда –1=–1. Получили тождество. Так поступаем со всеми остальными уравнениями системы (1) .

Замечание. Проверка обычно довольно громоздкая. Можно рекомендовать следующую «частичную проверку»: в общем решении системы (1) произвольным постоянным придать некоторые значения и подставить полученное частное решение только в отброшенные уравнения (т. е. в те уравнения из (1) , которые не вошли в (5) ). Если получите тождества, то, скорее всего , решение системы (1) найдено правильно (но полной гарантии правильности такая проверка не дает!). Например, если в (7) положить С2= - 1 , С1=1 , то получим: x1=-3, x2=3, x3=-1, x4=0. Подставляя в последнее уравнение системы (1), имеем: - 3+3 - 1 - 9∙0= - 1 , т. е. –1=–1. Получили тождество.

Пример 2. Найти общее решение системы линейных уравнений (1) , выразив основные неизвестные через свободные.

Решение. Как и в примере 1 , составляем матрицы A и https://pandia.ru/text/78/176/images/image010_57.gif" width="156" height="50"> этих матриц. Оставляем теперь только те уравнения системы (1) , коэффициенты из которых входят в этот базисный минор (т. е. у нас – первые два уравнения) и рассматриваем состоящую из них систему, эквивалентную системе (1).

Перенесем в правые части этих уравнений свободные неизвестные.

Систему (9) решаем методом Гаусса, считая правые части свободными членами.

https://pandia.ru/text/78/176/images/image035_21.gif" width="202 height=106" height="106">

Вариант 2.

https://pandia.ru/text/78/176/images/image039_16.gif" width="192" height="106 src=">

Вариант 4.

https://pandia.ru/text/78/176/images/image042_14.gif" width="172" height="80">

Вариант 5.

https://pandia.ru/text/78/176/images/image044_12.gif" width="179 height=106" height="106">

Вариант 6.

https://pandia.ru/text/78/176/images/image046_11.gif" width="195" height="106">

Системы линейных уравнений, у которой все свободные члены равны нулю, называются однородными :

Любая однородная система всегда совместна, поскольку всегда обладает нулевым (тривиальным ) решением. Возникает вопрос, при каких условиях однородная система будет иметь нетривиальное решение.

Теорема 5.2. Однородная система имеет нетривиальное решение тогда и только тогда, когда ранг основной матрицы меньше числа ее неизвестных.

Следствие . Квадратная однородная система имеет нетривиальное решение тогда и только тогда, когда определитель основной матрицы системы не равен нулю.

Пример 5.6. Определить значения параметра l, при которых система имеет нетривиальные решения, и найти эти решения:

Решение . Эта система будет иметь нетривиальное решение тогда, когда определитель основной матрицы равен нулю:

Таким образом, система нетривиальна, когда l=3 или l=2. При l=3 ранг основной матрицы системы равен 1. Тогда оставляя только одно уравнение и полагая, что y =a и z =b , получим x=b-a , т.е.

При l=2 ранг основной матрицы системы равен 2. Тогда, выбирая в качестве базисного минор:

получим упрощенную систему

Отсюда находим, что x=z /4, y=z /2. Полагая z =4a , получим

Множество всех решений однородной системы обладает весьма важным линейным свойством : если столбцы X 1 и X 2 - решения однородной системы AX = 0 , то всякая их линейная комбинация aX 1 + bX 2 также будет решением этой системы . Действительно, поскольку AX 1 = 0 и AX 2 = 0 , то A (aX 1 + bX 2) = aAX 1 + bAX 2 = a · 0 + b · 0 = 0. Именно вследствие этого свойства, если линейная система имеет более одного решения, то этих решений будет бесконечно много.

Линейно независимые столбцы E 1 , E 2 , E k , являющиеся решениями однородной системы, называется фундаментальной системой решений однородной системы линейных уравнений, если общее решение этой системы можно записать в виде линейной комбинации этих столбцов:

Если однородная система имеет n переменных, а ранг основной матрицы системы равен r , то k = n-r .

Пример 5.7. Найти фундаментальную систему решений следующей системы линейных уравнений:

Решение . Найдем ранг основной матрицы системы:

Таким образом, множество решений данной системы уравнений образует линейное подпространство размерности n - r = 5 - 2 = 3. Выберем в качестве базисного минор

.

Тогда оставляя только базисные уравнения (остальные будут линейной комбинацией этих уравнений) и базисные переменные (осталь-ные, так называемые свободные, переменные переносим вправо), по-лучим упрощенную систему уравнений:

Полагая, x 3 = a , x 4 = b , x 5 = c , находим


, .

Полагая a = 1, b = c = 0, получим первое базисное решение; полагая b = 1, a = c = 0, получим второе базисное решение; полагая c = 1, a = b = 0, получим третье базисное решение. В результате, нормальная фундаментальная система решений примет вид

С использованием фундаментальной системы общее решение однородной системы можно записать в виде

X = aE 1 + bE 2 + cE 3 . à

Отметим некоторые свойства решений неоднородной системы линейных уравнений AX=B и их взаимосвязь соответствующей однородной системой уравнений AX = 0.

Общее решение неоднородной системы равно сумме общего решения соответствующей однородной системы AX = 0 и произвольного частного решения неоднородной системы . Действительно, пусть Y 0 произвольное частное решение неоднородной системы, т.е. AY 0 = B , и Y - общее решение неоднородной системы, т.е. AY = B . Вычитая одно равенство из другого, получим
A (Y-Y 0) = 0, т.е. Y - Y 0 есть общее решение соответствующей однородной системы AX =0. Следовательно, Y - Y 0 = X , или Y = Y 0 + X . Что и требовалось доказать.

Пусть неоднородная система имеет вид AX = B 1 + B 2 . Тогда общее решение такой системы можно записать в виде X = X 1 + X 2 , где AX 1 = B 1 и AX 2 = B 2 . Это свойство выражает универсальное свойство вообще любых линейных систем (алгебраических, дифференциальных, функциональных и т.д.). В физике это свойство называется принципом суперпозиции , в электро- и радиотехнике - принципом наложения . Например, в теории линейных электрических цепей ток в любом контуре может быть получен как алгебраическая сумма токов, вызываемых каждым источником энергии в отдельности.

Ещё в школе каждый из нас изучал уравнения и, наверняка, системы уравнений. Но не многие знают, что существует несколько способов их решения. Сегодня мы подробно разберём все методы решения системы линейных алгебраических уравнений, которые состоят более чем из двух равенств.

История

На сегодняшний день известно, что искусство решать уравнения и их системы зародилось ещё в Древнем Вавилоне и Египте. Однако равенства в их привычном для нас виде появились после возникновения знака равенства "=", который был введён в 1556 году английским математиком Рекордом. Кстати, этот знак был выбран не просто так: он означает два параллельных равных отрезка. И правда, лучшего примера равенства не придумать.

Основоположником современных буквенных обозначений неизвестных и знаков степеней является французский математик Однако его обозначения значительно отличались от сегодняшних. Например, квадрат неизвестного числа он обозначал буквой Q (лат."quadratus"), а куб - буквой C (лат. "cubus"). Эти обозначения сейчас кажутся неудобными, но тогда это был наиболее понятный способ записать системы линейных алгебраических уравнений.

Однако недостатком в тогдашних методах решения было то, что математики рассматривали только положительные корни. Возможно, это связано с тем, что отрицательные значения не имели никакого практического применения. Так или иначе, но первыми считать отрицательные корни начали именно итальянские математики Никколо Тарталья, Джероламо Кардано и Рафаэль Бомбелли в 16 веке. А современный вид, основной метод решения (через дискриминант) был создан только в 17 веке благодаря работам Декарта и Ньютона.

В середине 18 века швейцарский математик Габриэль Крамер нашёл новый способ для того, чтобы сделать решение систем линейных уравнений проще. Этот способ был впоследствии назван его именем и по сей день мы пользуемся им. Но о методе Крамера поговорим чуть позднее, а пока обсудим линейные уравнения и методы их решения отдельно от системы.

Линейные уравнения

Линейные уравнения - самые простые равенства с переменной (переменными). Их относят к алгебраическим. записывают в общем виде так: а 1 *x 1 +а 2* x 2 +...а n *x n =b. Представление их в этом виде нам понадобится при составлении систем и матриц далее.

Системы линейных алгебраических уравнений

Определение этого термина такое: это совокупность уравнений, которые имеют общие неизвестные величины и общее решение. Как правило, в школе все решали системы с двумя или даже тремя уравнениями. Но бывают системы с четырьмя и более составляющими. Давайте разберёмся сначала, как следует их записать так, чтобы в дальнейшем было удобно решать. Во-первых, системы линейных алгебраических уравнений будут выглядеть лучше, если все переменные будут записаны как x с соответствующим индексом: 1,2,3 и так далее. Во-вторых, следует привести все уравнения к каноническому виду: а 1 *x 1 +а 2* x 2 +...а n *x n =b.

После всех этих действий мы можем начать рассказывать, как находить решение систем линейных уравнений. Очень сильно для этого нам пригодятся матрицы.

Матрицы

Матрица - это таблица, которая состоит из строк и столбцов, а на их пересечении находятся её элементы. Это могут быть либо конкретные значения, либо переменные. Чаще всего, чтобы обозначить элементы, под ними расставляют нижние индексы (например, а 11 или а 23). Первый индекс означает номер строки, а второй - столбца. Над матрицами, как и над любым другим математическим элементом можно совершать различные операции. Таким образом, можно:

2) Умножать матрицу на какое-либо число или вектор.

3) Транспонировать: превращать строчки матрицы в столбцы, а столбцы - в строчки.

4) Умножать матрицы, если число строк одной их них равно количеству столбцов другой.

Подробнее обсудим все эти приёмы, так как они пригодятся нам в дальнейшем. Вычитание и сложение матриц происходит очень просто. Так как мы берём матрицы одинакового размера, то каждый элемент одной таблицы соотносится с каждым элементом другой. Таким образом складываем (вычитаем) два этих элемента (важно, чтобы они стояли на одинаковых местах в своих матрицах). При умножении матрицы на число или вектор необходимо просто умножить каждый элемент матрицы на это число (или вектор). Транспонирование - очень интересный процесс. Очень интересно иногда видеть его в реальной жизни, например, при смене ориентации планшета или телефона. Значки на рабочем столе представляют собой матрицу, а при перемене положения она транспонируется и становится шире, но уменьшается в высоте.

Разберём ещё такой процесс, как Хоть он нам и не пригодится, но знать его будет всё равно полезно. Умножить две матрицы можно только при условии, что число столбцов одной таблицы равно числу строк другой. Теперь возьмём элементы строчки одной матрицы и элементы соответствующего столбца другой. Перемножим их друг на друга и затем сложим (то есть, например, произведение элементов a 11 и а 12 на b 12 и b 22 будет равно: а 11 *b 12 + а 12 *b 22). Таким образом, получается один элемент таблицы, и аналогичным методом она заполняется далее.

Теперь можем приступить к рассмотрению того, как решается система линейных уравнений.

Метод Гаусса

Этой тему начинают проходить еще в школе. Мы хорошо знаем понятие "система двух линейных уравнений" и умеем их решать. Но что делать, если число уравнений больше двух? В этом нам поможет

Конечно, этим методом удобно пользоваться, если сделать из системы матрицу. Но можно и не преобразовывать её и решать в чистом виде.

Итак, как решается этим методом система линейных уравнений Гаусса? Кстати, хоть этот способ и назван его именем, но открыли его ещё в древности. Гаусс предлагает следующее: проводить операции с уравнениями, чтобы в конце концов привести всю совокупность к ступенчатому виду. То есть, нужно, чтобы сверху вниз (если правильно расставить) от первого уравнения к последнему убывало по одному неизвестному. Иными словами, нужно сделать так, чтобы у нас получилось, скажем, три уравнения: в первом - три неизвестных, во втором - два, в третьем - одно. Тогда из последнего уравнения мы находим первое неизвестное, подставляем его значение во второе или первое уравнение, и далее находим оставшиеся две переменные.

Метод Крамера

Для освоения этого метода жизненно необходимо владеть навыками сложения, вычитания матриц, а также нужно уметь находить определители. Поэтому, если вы плохо всё это делаете или совсем не умеете, придется поучиться и потренироваться.

В чём суть этого метода, и как сделать так, чтобы получилась система линейных уравнений Крамера? Всё очень просто. Мы должны построить матрицу из численных (практически всегда) коэффициентов системы линейных алгебраических уравнений. Для этого просто берём числа перед неизвестными и расставляем в таблицу в том порядке, как они записаны в системе. Если перед числом стоит знак "-", то записываем отрицательный коэффициент. Итак, мы составили первую матрицу из коэффициентов при неизвестных, не включая числа после знаков равенства (естественно, что уравнение должно быть приведено к каноническому виду, когда справа находится только число, а слева - все неизвестные с коэффициентами). Затем нужно составить ещё несколько матриц - по одной для каждой переменной. Для этого заменяем в первой матрице по очереди каждый столбец с коэффициентами столбцом чисел после знака равенства. Таким образом получаем несколько матриц и далее находим их определители.

После того как мы нашли определители, дело за малым. У нас есть начальная матрица, и есть несколько полученных матриц, которые соответствуют разным переменным. Чтобы получить решения системы, мы делим определитель полученной таблицы на определитель начальной таблицы. Полученное число и есть значение одной из переменных. Аналогично находим все неизвестные.

Другие методы

Существует ещё несколько методов для того, чтобы получить решение систем линейных уравнений. Например, так называемый метод Гаусса-Жордана, который применяется для нахождения решений системы квадратных уравнений и тоже связан с применением матриц. Существует также метод Якоби для решения системы линейных алгебраических уравнений. Он легче всех адаптируется для компьютера и применяется в вычислительной технике.

Сложные случаи

Сложность обычно возникает, если число уравнений меньше числа переменных. Тогда можно наверняка сказать, что, либо система несовместна (то есть не имеет корней), или количество её решений стремится к бесконечности. Если у нас второй случай - то нужно записать общее решение системы линейных уравнений. Оно будет содержать как минимум одну переменную.

Заключение

Вот мы и подошли к концу. Подведём итоги: мы разобрали, что такое система и матрица, научились находить общее решение системы линейных уравнений. Помимо этого рассмотрели другие варианты. Выяснили, как решается система линейных уравнений: метод Гаусса и Поговорили о сложных случаях и других способах нахождения решений.

На самом деле эта тема гораздо более обширна, и если вы хотите лучше в ней разобраться, то советуем почитать больше специализированной литературы.

Пример 1 . Найти общее решение и какую-нибудь фундаментальную систему решений для системы

Решение находим с помощью калькулятора . Алгоритм решения такой же, как и для систем линейных неоднородных уравнений.
Оперируя только со строками, находим ранг матрицы, базисный минор; объявляем зависимые и свободные неизвестные и находим общее решение.


Первая и вторая строки пропорциональны, одну из них вычеркнем:

.
Зависимые переменные – x 2 , x 3 , x 5 , свободные – x 1 , x 4 . Из первого уравнения 10x 5 = 0 находим x 5 = 0, тогда
; .
Общее решение имеет вид:

Находим фундаментальную систему решений, которая состоит из (n-r) решений. В нашем случае n=5, r=3, следовательно, фундаментальная система решений состоит из двух решений, причем эти решения должны быть линейно независимыми. Чтобы строки были линейно независимыми, необходимо и достаточно, чтобы ранг матрицы, составленной из элементов строк, был равен количеству строк, то есть 2. Достаточно придать свободным неизвестным x 1 и x 4 значения из строк определителя второго порядка, отличного от нуля, и подсчитать x 2 , x 3 , x 5 . Простейшим определителем, отличным от нуля, является .
Таким образом, первое решение: , второе – .
Эти два решения составляют фундаментальную систему решений. Заметим, что фундаментальная система не единственна (определителей, отличных от нуля, можно составить сколько угодно).

Пример 2 . Найти общее решение и фундаментальную систему решений системы
Решение.



,
отсюда следует, что ранг матрицы равен 3 и равен числу неизвестных. Значит, система не имеет свободных неизвестных, а поэтому имеет единственное решение – тривиальное.

Задание . Исследовать и решить систему линейных уравнений.
Пример 4

Задание . Найти общее и частное решения каждой системы.
Решение. Выпишем основную матрицу системы:

5 -2 9 -4 -1
1 4 2 2 -5
6 2 11 -2 -6
x 1 x 2 x 3 x 4 x 5

Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы.
Умножим 2-ую строку на (-5). Добавим 2-ую строку к 1-ой:
0 -22 -1 -14 24
1 4 2 2 -5
6 2 11 -2 -6

Умножим 2-ую строку на (6). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:
Найдем ранг матрицы.
0 22 1 14 -24
6 2 11 -2 -6
x 1 x 2 x 3 x 4 x 5

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), следовательно rang(A) = 2.
Этот минор является базисным. В него вошли коэффициенты при неизвестных x 1 ,x 2 , значит, неизвестные x 1 ,x 2 – зависимые (базисные), а x 3 ,x 4 ,x 5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор.
0 22 14 -1 -24
6 2 -2 -11 -6
x 1 x 2 x 4 x 3 x 5

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
22x 2 = 14x 4 - x 3 - 24x 5
6x 1 + 2x 2 = - 2x 4 - 11x 3 - 6x 5
Методом исключения неизвестных находим нетривиальное решение :
Получили соотношения, выражающие зависимые переменные x 1 ,x 2 через свободные x 3 ,x 4 ,x 5 , то есть нашли общее решение :
x 2 = 0.64x 4 - 0.0455x 3 - 1.09x 5
x 1 = - 0.55x 4 - 1.82x 3 - 0.64x 5
Находим фундаментальную систему решений, которая состоит из (n-r) решений.
В нашем случае n=5, r=2, следовательно, фундаментальная система решений состоит из 3-х решений, причем эти решения должны быть линейно независимыми.
Чтобы строки были линейно независимыми, необходимо и достаточно, чтобы ранг матрицы, составленной из элементов строк, был равен количеству строк, то есть 3.
Достаточно придать свободным неизвестным x 3 ,x 4 ,x 5 значения из строк определителя 3-го порядка, отличного от нуля, и подсчитать x 1 ,x 2 .
Простейшим определителем, отличным от нуля, является единичная матрица.
1 0 0
0 1 0
0 0 1

Задача . Найти фундаментальный набор решений однородной системы линейных уравнений.