Основные виды обработки металлов. Новые технологии обработки металлов


Транскрипт

1 МИНИСТЕРСТВО ПО ОБРАЗОВАНИЮ И НАУКЕ РФ Государственное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» НОЯБРЬСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА (филиал) РАБОЧАЯ ПРОГРАММА дисциплины ТЕХНОЛОГИЯ ОБРАБОТКИ МАТЕРИАЛОВ для специальности Монтаж и техническая эксплуатация промышленного оборудования (по отраслям) г. Ноябрьск, 2010 г.

2 2 ОДОБРЕНА Предметной (цикловой) комиссией нефтепромысловых дисциплин Протокол 9 от «13» мая 2010г. Председатель А.Ю.Туголукова Председатель ПЦК ОПД и СД С.Н. Фаренюк СОСТАВЛЕНА в соответствии с Государственными требованиями к минимуму содержания и уровню подготовки выпускника по специальности и на основе примерной программы учебной дисциплины «Технология обработки материалов», ИПР СПО Минобразования России, «УТВЕРЖДАЮ» Заместитель директора УМР Э.В. Бакиева «14» мая 2010г. Разработал: Новичкова Г.В. - преподаватель общепрофессиональных дисциплин Рецензенты: Пискарёва И.А. - преподаватель общепрофессиональных и специальных дисциплин Демьянов А.А. Генеральный директор ООО «ЯмалСпецЦентр»

3 3 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа учебной дисциплины «Технология обработки материалов» предназначена для реализации государственных требований к минимуму содержания и уровню подготовки выпускников по специальности «Монтаж и техническая эксплуатация промышленного оборудования» (по отраслям), и является единой для всех форм обучения в системе СПО. Учебная дисциплина «Технология обработки материалов» является общепрофессиональной. В результате изучения учебной дисциплины студент должен: иметь представление: о взаимосвязи дисциплины «Технология обработки материалов» с другими общепрофессиональными и специальными дисциплинами; о прикладном характере дисциплины в рамках специальности; о перспективах развития и о роли общепрофессиональных знаний в профессиональной деятельности; о современных тенденциях развития обработки материалов; о литейном производстве; об обработке давлением; о сварочном производстве; о заготовительной обработке заготовок; о физических процессах и явлениях, сопровождающих стружкообразование; об электрохимических способах обработки деталей; назначение, классификацию, принцип работы и область применения металлорежущих станков; конструкцию основных металлорежущих инструментов; правила безопасности при работе на металлорежущих станках; оснащение приспособлениями металлообрабатывающих станков; основные положения технологической документации; методику расчѐта режимов резания; основные технологические методы формирования заготовок; устройство и принцип действия металлообрабатывающих станков; уметь: выбирать рациональный способ обработки деталей; оформлять технологическую и другую документацию в соответствии с действующей нормативной базой; производить расчѐты; заполнять технологическую карту механической обработки заготовки;

4 выбирать конструкцию и геометрические параметры резца для заданных условий обработки; выбирать средства и контролировать геометрические параметры инструмента; определять оптимальную скорость резания для заданных условий обработки; определять тип станка по его модели; определять главные и вспомогательные движения в станке; читать кинематическую схему станка; определять типовые механизмы станка; составлять перечень операций обработки, выбирать режущий инструмент и оборудование для обработки вала, отверстия, паза, резьбы и зубчатого колеса. Формируемые у студентов в процессе изучения дисциплины представления, знания, умения по разделам (темам) приведены в разделе «содержание учебной дисциплины» данной программы. Преподавание учебной дисциплины должно имеет практическую направленность и проводиться в тесной взаимосвязи с общепрофессиональными и специальными дисциплинами. Использование междисциплинарных связей обеспечивает преемственность в изучении материала и исключает дублирование, что позволяет рационально распределять время. В процессе изучения учебной дисциплины постоянно обращается внимание студентов на вопросы техники безопасности, охраны труда, промышленной санитарии, пожарной безопасности, экологической безопасности производства и охраны окружающей среды. При изложении материала соблюдается единство терминологии, обозначений, единиц измерения в соответствии с действующими стандартами. Для лучшего усвоения студентами учебного материала занятия предусмотрено проводить с применением современных технических средств обучения. Всего на изучение данной дисциплины отведено 104 часа, из низ 80 часов аудиторных занятий, которые включают в себя: 50 часов лекционных и комбинированных занятий; для закрепления теоретического материала и приобретения навыков в выборе элементной базы предусматривается выполнение лабораторно-практических занятий в количестве - 30 часов и 24 часа отведено на самостоятельную внеаудиторную работу. Формы и виды контроля: -текущий контроль является одним из основных видов проверки знаний, умений и навыков студентов. При организации текущего контроля необходимо добиваться сознательного усвоения студентами учебного материала, не допуская больших интервалов в контроле каждого студента, в этом случае студенты перестают регулярно готовиться к занятиям, а 4

5 следовательно, и систематически закреплять пройденный материал. Рубежный контроль позволяет определить качество изучения студентами учебного материала по разделам, темам предмета. Такой контроль проводиться несколько раз в семестр: в форме 1обязательной контрольной работы, контрольно-зачетных и зачетно-обобщающих уроков, зачетов по лабораторным работам и практическим занятиям. Итоговый контроль по дисциплине «Технология обработки материалов» проводится в соответствии с рабочим учебным планом в конце изучения курса (4 семестр) в форме дифференцированного зачета. 5

6 6 ТЕМАТИЧЕСКИЙ ПЛАН УЧЕБНОЙ ДИСЦИПЛИНЫ Наименование разделов и тем Максим. учебная нагрузка студента Количество аудиторных часов Всего в том числе ЛПЗ Введение 2 2 Раздел 1 Технологические методы производства заготовок 1.1 Технологические процессы в машиностроении 1.2 Основы литейного производства 1.3 Технология обработки давлением 1.4 Технология производства заготовок сваркой 1.5 Технология производства неразъемных соединений Раздел 2 Методы механической обработки поверхностей деталей машин 2.1 Предварительная обработка заготовок Самост. работа студента Обработка металлов резанием Раздел 3 Виды обработки металлов резанием. Металлорежущие инструменты и станки Металлорежущие станки Токарная обработка, применяемые станки и инструменты 3.3 Строгание и долбление, применяемый инструмент и станки

7 7 3.4 Сверление, зенкерование и развертывание, применяемый инструмент и станки 3.5 Фрезерование, применяемый инструмент и станки 3.6 Зубонарезание, резьбонарезание, применяемые инструменты и станки 3.7 Протягивание, применяемый инструмент и станки 3.8 Шлифование, применяемый инструмент и станки 3.9 Основы автоматизации металлорежущих станков 3.10 Методы электрохимической обработки металлов, методы лучевой обработки Раздел 4 Изготовление деталей на станках типовых 4.1 Обработка наружных поверхностей вращения 4.2 Обработка внутренних поверхностей вращения 4.3 Обработка плоскостей, пазов, фасонных поверхностей 4.4 Обработка резьбовых и зубчатых поверхностей Контрольная работа 2 2 Зачёт Всего по дисциплине: Перечень практических занятий: 1. Структура технологического процесса 2. Правила оформления технологических документов. 3. Технология паяния. 4. Технология склеивания.

8 5. Определение времени, затрачиваемого на рубку, правку заготовок, разрезание прутков, центрование. 6. Измерение геометрических параметров сверл, зенкеров и разверток. 7. Изучение процесса фрезерования. 8. Изучение инструментов для нарезания зубчатых колѐс. 9. Изучение инструмента для резьбонарезания. 10. Изучение процесса шлифования. 11. Электрохимическая обработка металлов. 12. Типовой технологический процесс обработки ступенчатого и гладкого вала. 13. Типовой технологический процесс изготовления втулок. 14. Типовой технологический процесс изготовления корпусных деталей. 15. Типовой технологический процесс изготовления зубчатых колес. 8

9 9 СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ ВВЕДЕНИЕ связь дисциплины «Технология обработки материалов» с другими дисциплинами; историю возникновения и развития науки о резании металлов; задачи дисциплины «Технология обработки материалов»; достижения новаторов производства. Содержание дисциплины «Технология обработки материалов», ее связь с другими учебными дисциплинами. Перспективы развития машиностроения, станкостроения и инструментальной промышленности. Содружество науки и производства, достижения новаторов производства. Раздел 1 ТЕХНОЛОГИЧЕСКИЕ МЕТОДЫ ПРОИЗВОДСТВА ЗАГОТОВОК Тема 1.1 Технологические процессы в машиностроении определение производственного и технологического процесса и его структуру; виды технологических документов и правила их оформления. Производственный и технологический процесс. Структура технологического процесса. Виды технологических процессов. Виды технологической документации. Правила оформления технологических документов. Практическая работа 1 Структура технологического процесса Практическая работа 2 Правила оформления технологических документов. Самостоятельная работа студентов Приготовить презентацию, найти видеоролики

10 10 Тема 1.2 Основы литейного производства технологию литья методом формовки в опоках; технологию и способы литья специальным способом; достоинства каждого вида специального литья и его область применения. Классификация способов изготовления отливок. Изготовление отливок в песчаных формах. Понятие об изготовлении отливок специальными способами литья в оболочковых формах, по выплавляемым моделям, в металлических формах (кокилях), центробежным литьем, литьем под давлением. Тема 1.3. Технология обработки давлением сущность процессов, происходящих при холодной и горячей обработке давлением; разновидности обработки давлением; температурный режим холодной и горячей обработки давлением; операции ковки и инструменты, применяемые при ковке; процесс прокатки, волочения, ковки, прессования, штамповки. Холодная и горячая деформация. Пластичность металлов и сопротивление деформированию. Назначение нагрева перед обработкой давлением. Понятие о температурном интервале обработки давлением. Классификация видов обработки давлением. Прокатка. Понятие о технологическом процессе прокатки. Продукция прокатного производства. Волочение, исходные заготовки и готовая продукция. Сущность ковки. Основные операции, инструмент. Понятие о технологическом процессе ковки. Горячая объѐмная штамповка, понятие о технологическом процессе горячей объѐмной штамповки. Тема 1.4. Технология производства заготовок сваркой применение сварки в машиностроении; особенности сварки плавлением и давлением;

11 11 различные виды сварки; виды сварных соединений в зависимости от свариваемых деталей; способы сварки в зависимости от свариваемых материалов. Основы сварочного производства. Применение сварки в машиностроении. Сварка плавлением: ручная дуговая сварка, полуавтоматическая дуговая сварка под флюсом, электрошлаковая сварка, в среде защитных газов. Сварка давлением: контактная электрическая сварка, стыковая контактная сварка, точечная, шовная, конденсаторная сварка. Сварка трением, холодная сварка. Тема 1.5. Технология производства неразъемных соединений технологию паяния и склеивания; основные технологические методы формообразования заготовок; уметь: выбирать рациональный способ получения заготовки; определять параметры качества получаемых поверхностей; характеризовать способ получения заготовки; выполнять пайку и склеивание изделий. Пайка и склеивание деталей. Применение паяния и склеивания в машиностроении. Виды припоев, флюсов. Разновидности клея. Технология паяния и склеивания. Практическая работа 3 Технология паяния. Практическая работа 4 Технология склеивания. Самостоятельная работа студентов Приготовить презентацию, найти видеоролики Тема 2.1. Предварительная обработка заготовок разновидности предварительной обработки заготовок; технологию рубки, правки, обдирки прутков, разрезания прутков, центрования; уметь:

12 определять время, затрачиваемое на выполнение заготовительных операций. Рубка, правка заготовок, обдирка прутков, разрезание прутков, центрование. Практическая работа 5 Определение времени, затрачиваемого на рубку, правку заготовок, разрезание прутков, центрование. Самостоятельная работа студентов Приготовить презентацию, найти видеоролики Тема 2.2. Обработка металлов резанием физические явления, сопровождающие процесс резания металлов, их влияние на качество обработки заготовки; влияние различных факторов на скорость резания; силы, возникающие при резании металлов. Физические основы процесса резания. Деформация металла в процессе резания, процесс образования стружки, типы стружки. Явления наростообразования, причины возникновения нароста на резце. Наклеп и усадка стружки. Силы резания, тепловыделение при резании. Работа, совершаемая при резании. Источники образования тепла. Мощность, затрачиваемая при резании.ьскорость и факторы, влияющие на скорость резания. Определение оптимальной скорости при помощи формул и таблиц. Нормирование станочных работ. Определение времени, затрачиваемого на обработку детали. Раздел 3 ВИДЫ ОБРАБОТКИ МЕТАЛЛОВ РЕЗАНИЕМ. МЕТАЛЛОРЕЖУЩИЕ ИНСТРУМЕНТЫ И СТАНКИ Тема 3.1. Металлорежущие станки классификацию металлорежущих станков; значение букв и цифр в марках станка; передачи в станках; паспортные данные станков. 12

13 13 Классификация станков по степени универсальности. Группы и типы станков по системе ЭНИИМС. Значение букв и цифр в марках станков. Движения в станках: главные, вспомогательные. Передачи в станках. Кинематические схемы станков, кинематические цепи. Настройка кинематической цепи. Паспортные данные станков. Самостоятельная работа студентов Приготовить презентацию, найти видеоролики Тема 3.2. Токарная обработка, применяемые станки и инструменты виды и конструкции резцов в зависимости от обработки; углы резца; поверхности заготовки; основные показатели резания; разновидности токарных станков, область их применения; уметь: определять группу, тип, параметры металлорежущего станка по марке; определять мощность станка, корректировать показатели резания по паспортным данным станка; определять главные движения и вспомогательные движения в станке; выбирать конструкцию и геометрические параметры резца для заданных условий обработки; назначать оптимальные режимы резания при токарной обработке; работать с кинематикой токарных станков. Процесс токарной обработки. Виды и конструкция резцов для токарной обработки. Основные элементы резца. Поверхности обрабатываемой резцом заготовки. Исходные плоскости для определения углов. Углы резца. Конструкции резцов в зависимости от их назначения и видов обработки. Расширение номенклатуры резцов за счет оснащения отдельными пластинами. Способы крепления пластин к державкам резца. Основные показатели резания: глубина резания, подача, скорость резания. Износ резцов, стойкость резца, критерии износа резца. Токарные станки: винторезные, револьверные, лобовые и карусельные, токарные автоматы и полуавтоматы, принцип их работы. Общие сведения о станках, назначение и область их применения, рассмотрение кинематики данных станков.

14 14 Тема 3.3. Строгание и долбление, применяемый инструмент и станки особенности процесса строгания и долбления; классификацию и назначение строгальных и долбежных станков; разновидности строгальных и долбежных станков, их кинематику, основные узлы. Процесс строгания и долбления. Геометрия строгальных и долбежных резцов.режимы резания при строгании и долблении, их особенности. Определение силы и мощности резания при строгании и долблении. Нормирование строгальных работ. Техника безопасности. Разновидности строгальных и долбежных станков, их кинематика. Основные узлы и кинематическая схема. Тема 3.4. Сверление, зенкерование и развертывание, применяемые инструмент и станки особенности процесса сверления, зенкерования и развертывания; движения при сверлении, зенкеровании и развертывании; разновидности сверл, зенкеров и разверток; элементы конструкции сверл, зенкеров и разверток; расчет режимов резания при сверлении, зенкеровании и развертывании; разновидности сверлильных и расточных станков, принцип их работы; уметь: выбирать режущий инструмент и определять оптимальный режим резания при строгании для заданных условий обработки; определять основное технологическое время при строгании; выбирать режущий инструмент для производства отверстия; определять глубину, подачу, частоту вращения сверла, зенкера и развертки; определять основное технологическое время при сверлении, зенкеровании, развертывании; составлять уравнение кинематического баланса для различных кинематических цепей строгальных, сверлильных, расточных станков; определять геометрические параметры сверл, зенкеров, разверток. Процесс сверления, зенкерования и развертывания. Основные движения,

15 особенности процессов. Элементы конструкций сверл, зенкеров и разверток, геометрические параметры. Особенности элементов конструкции инструментов. Силы, действующие на сверло, крутящий момент. Последовательность расчета режимов резания при сверлении, зенкеровании и развертывании. Разновидности сверлильных и расточных станков. Назначение, характеристика, основные узлы, кинематическая схема, выполняемые работы. Практическая работа 6 Измерение геометрических параметров сверл, зенкеров и разверток. Самостоятельная работа студентов Приготовить презентацию, найти видеоролики Тема 3.5. Фрезерование, применяемый инструмент и станки особенности процесса фрезерования; назначение фрезерования; разновидности, конструкции фрез и их геометрию; виды фрезерования; виды фрезерных станков и их обозначение; назначение делительных головок; уметь: выбирать фрезу и определять оптимальный режим резания при фрезеровании для заданных условий обработки; определять основное технологическое время при цилиндрическом и торцовом фрезеровании; выполнять настройку кинематической цепи фрезерного станка; выбирать тип фрезерного станка для заданных условий обработки; производить настройку кинематической цепи делительной головки фрезерного станка для заданных условий работы. Процесс фрезерования. Назначение, разновидности, конструкция и геометрические параметры фрез. Особенности процесса фрезерования. Схемы резания при фрезеровании. Силы, действующие на фрезу. Особенности торцового фрезерования. Нормирование фрезерных работ. Фрезерные станки. Их назначение и область применения. Горизонтальнофрезерные, вертикально-фрезерные, продольно-фрезерные, карусельнофрезерные, копировально-фрезерные станки. Движения в станках. Основные узлы и кинематические схемы. Делительные головки, их виды и устройство. Настройка делительной головки на различные виды работ. Практическая работа 7 15

16 16 Изучение процесса фрезерования. Тема 3.6. Зубонарезание, резьбонарезание, применяемые инструменты и станки особенности методов копирования, обкатки и накатки зубчатой поверхности; конструктивные элементы метчика и плашки; конструктивные элементы дисковой модульной, червячной фрез; принцип работы зубообрабатывающих и резьбофрезерного станков; уметь: выбирать режущий инструмент и определять оптимальный режим резания для конкретного вида обработки зубчатой и резьбовой поверхности; составлять уравнение кинематического баланса для различных кинематических цепей зубо- и резьбообрабатывающих станков. Методы нарезания зубчатых поверхностей. Зубонарезные инструменты, работающие по методу копирования: дисковые и концевые модульные фрезы, головки для контурного долбления, область их применения. Зубонарезные инструменты, работающие по методу обкатки. Инструменты для нарезания цилиндрических колес: зуборезные гребенки, червячные модульные фрезы, зуборезные долбяки, шеверы. Инструменты для нарезания конических колес: парные строгальные резцы, парные фрезы, резцовые головки. Инструменты для обработки червячных колес: червячные фрезы, червячные шеверы. Основные сведения о зубонакатывании. Процесс резьбонарезания. Способы образования резьбы и резьбонарезные инструменты: метчики и плашки, машинно-ручные метчики, ручные метчики, гаечные метчики, резьбонарезные резцы и гребенки, гребенчатые фрезы, шлифовальные круги. Элементы режима резания при зубонарезании и резьбонарезании. Общие сведения о резьбонакатывании. Зубообрабатывающие и резьбообрабатывающие станки. Их классификация. Зубофрезерный станок, зубошевинговальный станок. Резьбофрезерный станок. Практическая работа 8 Изучение инструментов для нарезания зубчатых колѐс. Практическая работа 9 Изучение инструмента для резьбонарезания. Самостоятельная работа студентов

17 17 Приготовить презентацию, найти видеоролики Тема 3.7. Протягивание, применяемый инструмент и станки режущий инструмент и оптимальный режим резания при протягивании для заданных условий обработки; технологические возможности протяжного станка. Процесс протягивания, его особенности и область применения. Классификация протяжек, элементы конструкции и геометрические параметры протяжек. Схемы протягивания. Прошивка, ее отличие от протяжки. Нормирование работ при протягивании. Назначение и типы протяжных станков, их применение. Кинематика, гидропривод и принцип действия протяжного горизонтального станка. Тема 3.8. Шлифование, применяемый инструмент и станки особенности процесса шлифования; различные виды шлифования, их применение; классификацию шлифовальных станков, принцип их работы; разновидности шлифовальных станков, принцип их работы, устройство; разновидности доводочных станков, их назначение и принцип их работы. Процесс шлифования, его особенности и область применения. Характеристика абразивного инструмента, классификация абразивных материалов. Основные виды шлифования, режим резания при плоском шлифовании. Процесс хонингования. Шлифовальные станки, их классификация. Плоскошлифовальные, круглошлифовальные, бесцентровошлифовальные, внутришлифовальные станки, их основные узлы, назначение, гидрокинематическая схема станков. Основные узлы, принцип работы. Доводочные станки. Движения в станках. Устройство хонинговальных головок. Притирочные станки, работа на них. Сущность суперфиниширования. Практическая работа 10 Изучение процесса шлифования.

18 18 Тема 3.9. Основы автоматизации металлорежущих станков иметь представление: об автоматических линиях и станках ЧПУ. Основные направления автоматизации металлорежущих станков. Автоматические поточные линии, обрабатывающие центры. Самостоятельная работа студентов Приготовить презентацию, найти видеоролики Тема Методы электрохимической обработки металлов, методы лучевой обработки иметь представление: об электрохимических методах обработки материалов; сущность электрической обработки материалов. Сущность методов. Электрохимическое полирование Метод обработки электронным и световым лучом. Практическая работа 11 Электрохимическая обработка металлов. и шлифование. Раздел 4 ИЗГОТОВЛЕНИЕ ТИПОВЫХ ДЕТАЛЕЙ НА СТАНКАХ Тема 4.1 Обработка наружных поверхностей вращения технические требования, предъявляемые к валам; заготовки, применяемые для изготовления валов; типовой технологический процесс изготовления валов. Конструктивные формы валов. Технические требования, предъявляемые к валам. Подготовка заготовок валов к механической обработке. Типовой технологический процесс обработки ступенчатого и гладкого вала.

19 Практическая работа 12 Типовой технологический процесс обработки ступенчатого и гладкого вала. Тема 4.2. Обработка внутренних поверхностей вращения технические требования, предъявляемые к втулкам; заготовки, применяемые для изготовления втулок; типовой технологический процесс изготовления втулок. Характеристика отверстий по способу их обработки. Требования, предъявляемые к отверстиям. Типовой технологический процесс изготовления втулок. Практическая работа 13 Типовой технологический процесс изготовления втулок. Тема 4.3. Обработка плоскостей, пазов, фасонных поверхностей технические требования, предъявляемые к корпусным деталям; заготовки, применяемые для изготовления корпусных деталей; типовой технологический процесс изготовления корпусных деталей; уметь: выбирать заготовку для корпусных деталей; составлять перечень операций, выбирать режущий инструмент и оборудование для обработки корпусных деталей. Основные требования, предъявляемые к плоскостным деталям. Выбор метода обработки плоских поверхностей. Типовой технологический процесс изготовления корпусных деталей. Практическая работа 14 Типовой технологический процесс изготовления корпусных деталей. Тема 4.4. Обработка резьбовых и зубчатых поверхностей технические требования, предъявляемые к зубчатым колесам и резьбовым деталям; 19

20 заготовки, применяемые для изготовления зубчатых колес и резьбовых деталей; типовой технологический процесс изготовления зубчатых колес и резьбовых деталей. Требования, предъявляемые к зубчатым колесам и резьбовым поверхностям. Выбор метода обработки зубчатой поверхности. Выбор метода обработки резьбовой поверхности. Типовой технологический процесс изготовления зубчатых колес. Практическая работа 15 Типовой технологический процесс изготовления зубчатых колес Самостоятельная работа студентов Приготовить презентацию, найти видеоролики Контрольная работа. Зачёт. 20

21 21 СПИСОК ЛИТЕРАТУРЫ Основная: 1 Никитенко В.М. Технологические процессы в машиностроении. Ульяновск: УлГТУ, с 2 Материаловедение и технология металлов: Учебник для ВУЗОВ / Под ред. Сильмана Г.П. и др. -2-е изд., перераб. и доп. -М.: Высшая школа, Черпаков Б.И. Металлорежущие станки. М.: Издательский центр «Академия», с. Дополнительная: 1. Чернов Н.Н. Технологическое оборудование (металлорежущие станки). Учебное пособие М.: Машиностроение, с.


УПРАВЛЕНИЕ ОБРАЗОВАНИЯ И НАУКИ ЛИПЕЦКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ ОБЛАСТНОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ЛИПЕЦКИЙ МЕТАЛЛУРГИЧЕСКИЙ КОЛЛЕДЖ» УТВЕРЖДАЮ Директор ГОАПОУ «Липецкий

Процессы формообразования и инструменты 1. Цель и задачи дисциплины Целью освоения дисциплины «Процессы формообразования и инструменты» является ознакомление с основными закономерностями, имеющими место

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ЧЕЛЯБИНСКОЙ ОБЛАСТИ ГБОУ СПО (ССУЗ) «ЧЕЛЯБИНСКИЙ МЕХАНИКО ТЕХНОЛОГИЧЕСКИЙ ТЕХНИКУМ» Рекомендована цикловой методической комиссией технического профиля Протокол заседания

Управление образования и науки Тамбовской области. Тамбовское областное государственное бюджетное образовательное учреждение среднего профессионального образования «Котовский индустриальный техникум» Рабочая

Министерство образования Республики Беларусь Учреждение образования «Минский государственный машиностроительный колледж» 2015 г. 2016 г. 2017 г. ПЕРЕЧЕНЬ теоретических вопросов к экзамену по учебной дисциплине

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ РЕСПУБЛИКАНСКИЙ ИНСТИТУТ ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УТВЕРЖДЕНО Министерством образования Республики Беларусь..00 г. ОБРАБОТКА РЕЗАНИЕМ. МЕТАЛЛОРЕЖУЩИЕ СТАНКИ

Аннотация дисциплины «Технология конструкционных материалов» Направление подготовки 150700.62 Общая трудоемкость изучаемой дисциплины составляет 4 ЗЕТ(144 час.). Цели и задачи дисциплины: Целью дисциплины

СОДЕРЖАНИЕ 1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ стр. 2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ 5. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ 9. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Аннотация к рабочей программе дисциплины «Технология конструкционных материалов» Цель преподавания дисциплины Целью дисциплины является получение студентами общеинженерной технологической подготовки, которая

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ. ОП.05 «Общие основы технологии металлообработки и работ на металлорежущих станках» Наименование разделов и тем Тема 1. Физические основы процесса резания

Приложение 1 к протоколу 2 от 28.03.2017 ПРОГРАММА вступительных испытаний по предмету «ОСНОВЫ ОБРАБОТКИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ» для экзамена при поступлении на специальность «Машины и аппараты легкой,

Локтев Д.А. Металлорежущие станки инструментального производства Автор: Локтев Д.А. Издательство: Машиностроение Год: 1968 Страниц: 304 Формат: DJVU Размер: 11,5 Мб Качество: хорошее Язык: русский 1 /

СОДЕРЖАНИЕ стр. 1 ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ 4 1.1 Область применения программы 4 1. Место учебной дисциплины в структуре образовательной программы 4 1.3 Цели и задачи учебной дисциплины

ПРОИЗВОДСТВЕННОЕ ОБОРУДОВАНИЕ И ИНСТРУМЕНТЫ Методические указания и контрольные задания по дисциплине «Производственное оборудование и инструменты» V V V V S пр Министерство образования и науки РФ ФГБОУ

ДЛЯ ВУЗОВ Ä.Â. Êîæåâíèêîâ, Â.À. Ãðå èøíèêîâ, Ñ.Â. Êèðñàíîâ, Ñ.Í. Ãðèãîðüåâ, À.Ã. Ñõèðòëàäçå ÐÅÆÓÙÈÉ ÈÍÑÒÐÓÌÅÍÒ Ïîä îáùåé ðåäàêöèåé ïðîôåññîðà äîêòîðà òåõíè åñêèõ íàóê Ñ.Â. Êèðñàíîâà Èçäàíèå 4-å, ïåðåðàáîòàííîå

МИНИСТЕРСТВО ОБРАЗОВАНИЯ ТУЛЬСКОЙ ОБЛАСТИ Государственная профессиональная образовательная организация Тульской области «Тульский государственный машиностроительный колледж имени Никиты Демидова» (ГПОО

Министерство образования республики Беларусь Учреждение образования Брестский государственный технический университет «УТВЕРЖДАЮ» Ректор УО «БрГТУ» П.С.Пойта 2016 г. ПРОГРАММА вступительного испытания

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Московский государственный агроинженерный университет им. В.П. Горячкина Ф а к у л ь т е т з а о ч н о г о о б р а з о в а н и я К а ф е д р а т е

МЕТАЛЛОРЕЖУЩИЕ СТАНКИ И ИНСТРУМЕНТ Методические указания и контрольные задания по дисциплине «Станки и инструмент» V V V V S пр Министерство образования РФ Сибирская государственная автомобильно-дорожная

1. Цели освоения дисциплины Цель освоения дисциплины «Режимы процессов формообразования» являются формирование у студентов комплекса знаний о назначении режимов резания для различных операций механической

Министерство образования Республики Беларусь Филиал учреждения образования «Брестский государственный технический университет» Политехнический колледж УТВЕРЖДАЮ Зам. директора по учебной работе С.В. Маркина

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ ПРОФЕССИОНАЛЬНОГО МОДУЛЯ ПМ.04 Выполнение работ на сверлильных, токарных, фрезерных, копировальных, шпоночных и шлифовальных станках ПМ.04 Выполнение работ на сверлильных,

Оглавление Предисловие...9 Введение...11 Глава 1. Инструментальные материалы...13 1.1. Основные свойства инструментальных материалов...13 1.2. Углеродистые и легированные инструментальные стали...14 1.3.

1. Цели освоения дисциплины Целью освоения дисциплины «Оборудование машиностроительных производств» является овладение знаниями по устройству, наладке и эксплуатации технологического оборудования различного

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ МСХА имени К.А.

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ Письменное испытание проводится по программе, базирующейся на основной образовательной программе бакалавриата по направлению 15.04.01 «Машиностроение» код и наименование

Министерство образования Республики Беларусь Учреждение образования Мозырский государственный педагогический университет имени И.П. Шамякина. УТВЕРЖДАЮ: Проректор по учебной работе И.М. Масло 2010г. Регистрационный

М ИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Ф едеральное государственное бюджетное образовательное учреждение высш его профессионального образования «Томский государственны й педагогический

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ТЕРСКИЙ ФИЛИАЛ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КАБАРДИНО-БАЛКАРСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ Понятие о производственном и технологическом процессах. Структура технологического процесса (ГОСТ 3.1109-83). Виды и типы производства. Технологические характеристики типов производства

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ Государственное бюджетное профессиональное образовательное учреждение города Москвы Пищевой колледж 33 РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.02«Материаловедение»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УДМУРТСКОЙ РЕСПУБЛИКИ Бюджетное образовательное учреждение среднего профессионального образования Удмуртской Республики «ИЖЕВСКИЙ ИНДУСТРИАЛЬНЫЙ ТЕХНИКУМ» РАБОЧАЯ ПРОГРАММА

Каспийский государственный университет технологий и инжиниринга имени Ш. Есенова Кафедра «Нефтегазовое машиностроение» Государственный экзамен по профилирующей дисциплине специальности 5В071200 Машиностроение

Программа вступительного испытания по направлению подготовки для поступающих на 1 курс по программе магистратуры МГТУ «СТАНКИН» в 2017 г. направление подготовки 15.04.05 «Конструкторско-технологическое

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ МАШИНОСТРОИТЕЛЬНЫЙ

Место дисциплины в структуре образовательной программы Дисциплина «Методы деталей, станки и инструмент» является дисциплиной вариативной части. Рабочая программа составлена в соответствии с требованиями

Цели и задачи дисциплины. Дать студентам основы знаний о современном машиностроительном производстве и технологических процессах изготовления изделий в машиностроении.. Дать базовые знания по специальным

1 Цели и задачи дисциплины 1.1 Дать студентам основы знаний о современном машиностроительном производстве и технологических процессах изготовления изделий в машиностроении. 1.2 Дать базовые знания по специальным

Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет им. А.Н. Туполева КАИ» (КНИТУ КАИ) Зеленодольский

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ ПРОМЫШЛЕННЫХ ТЕХНОЛОГИЙ

Аннотация рабочей программы дисциплины «Б1.В.14 МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ» 1 Цель и задачи освоения дисциплины Целью освоения дисциплины Б1.В.14 «Материаловедение и технология

МИНОБРНАУКИ РОССИИ государственное образовательное учреждение высшего профессионального образования «Кузбасская государственная педагогическая академия» (КузГПА) Технолого-экономический факультет Кафедра

Ид занятия Форма проведения Количеств о часов Количеств о часов ид Форма Структура и содержание программы «Токарь» п/п Тема занятия, содержание Аудиторная работа Самост оятель ная работа Контроль знаний

Оглавление Предисловие...... 3 Р а зд е л I, М а т ер и а л о в ед ен и е 1. Основные сведения о свойствах и методах испытания металлов и сплавов... 6 1.1. Классификация металлических материалов...6 1.2.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Тюменский государственный нефтегазовый университет» Институт промышленных

Байкалова В.Н. Приходько И.Л. Колокатов А.М. Основы технического нормирования труда в машиностроении: Учебное пособие. М.: ФГОУ ВПО МГАУ 2005. 105 с. ПРИЛОЖЕНИЯ 2 Формулы основного времени ПРИЛОЖЕНИЕ 1

УДК 621.9 ББК 34.5 Ч-77 Металлообрабатывающие станки, режущий и мерительный инструменты: рабочая программа по учебной практике / Чихранов А.В. Димитровград: Технологический институт филиал ФГОУ ВПО «Ульяновская

1 Цели и задачи дисциплины 1.1 Изучение основ технологической науки и практики. 1. Приобретение навыков разработки технологических процессов механическоой обработки деталей и сборки узлов автомобилей.

Министерство образования и науки Российской Федерации Федеральное агентство по образованию Южно-Уральский государственный университет Кафедра «Технология машиностроения» 621(07) Ф157 С.А. Фадюшин, Д.Ю.

МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» БОРИСОГЛЕБСКИЙ ФИЛИАЛ (БФ ФГБОУ ВО «ВГУ») УТВЕРЖДАЮ Декан

Министерство образования Иркутской области ГБПОУИО «Иркутский авиационный техникум» Утверждаю Зам. директора по УР Коробкова Е.А. «3» августа 205 г. КАЛЕНДАРНО-ТЕМАТИЧЕСКИЙ ПЛАН на 205-206 учебный год

«Утверждаю» Ректор университета А. В. Лагерев «19» 09 2007 г. ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ РЕЖУЩИЙ ИНСТРУМЕНТ И ЕГО ОСНОВНЫЕ ЭЛЕМЕНТЫ И ГЕОМЕТРИЯ Методические указания к выполнению лабораторной

Комитет образования ЕАО Областное государственное профессиональное образовательное бюджетное учреждение «Политехнический техникум» Рассмотрено на заседании ПЦК Утверждено зам. директора по ООД (протокол

ПУБЛИЧНОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «КАМАЗ» Ремонтно-инструментальный завод Изготовление инструмента 2017 Сверла спиральные Сверла шнековые Сверла с утолщенной сердцевиной Сверла центровочные Сверла спиральные

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кубанский государственный университет» Филиал

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ МЕХАНИЧЕСКОЙ ОБРАБОТКИ ТИПОВЫХ ДЕТАЛЕЙ...8 Изготовление осей и валов...8 Заготовки и способы закрепления...8 Основные варианты изготовления осей и валов...9 Выбор оборудования

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

государственное образовательное учреждение
высшего профессионального образования

«АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

«УТВЕРЖДАЮ»

профессор Г.В. Лаврентьев

«____» ___________________ 2010 г.

П Р О Г Р А М М А

повышения квалификации педагогических работников

государственных образовательных учреждений

начального профессионального и среднего профессионального образования

по приоритетному направлению «Современные промышленные технологии»

СОГЛАСОВАНО:

Проректор по качеству

образовательной деятельности Г.А. Спицкая

Директор ЦППКП О.П. Морозова

Барнаул 2010

^ I. ВВЕДЕНИЕ

Для динамичного развития основных отраслей техники, создания новых механизмов и машин, выпуска широкого ассортимента товаров повседневного спроса в России ежегодно создаются десятки новых индивидуальных материалов и разрабатываются рецептуры сотен композитов. Для переработки этих материалов в готовые изделия, используемые в различных отраслях техники и машиностроения, применяются стандартные технологические операции и типовое оборудование профильных предприятий. Однако нередко свойства новых материалов, целенаправленно заложенные в них материаловедами еще при создании, позволяют значительно улучшить экономические, трудозатратные, энергетические и другие показатели технологических процессов их обработки, а, зачастую, и вовсе исключить многие типовые операции либо значительно сократить их время. Поэтому вместе с процессом создания новых материалов постоянно идут работы по корректировке, улучшению и разработке новых процессов и технологий их обработки.

За последние 10-15 лет число таких новых технологических процессов значительно увеличилось, изменилось и их оформление – порой от стадии разработки конструкторских чертежей до создания готовой детали в серийном производстве проходит несколько часов. Изменился и сам стиль, и содержание работы инженера-конструктора машиностроителя, технолога, станочника. Если раньше значительную долю в производительном времени первых двух составляли рутинные конструкторские операции, работа со справочной литературой, прочностные и технологические расчеты, разработка чертежей и технологических карт, то теперь с этой работой успешно справляются многочисленные CAD и САМ-системы. До недавнего времени станочник вручную по разработанной технологической карте выполнял изготовление детали, порой переставляя заготовку из одного станка в другой и используя несколько типов инструмента, постоянно контролируя параметры процессов и размеры готовой детали, то на современном производстве многие технологические операции изготовления и контроля выполняют автоматические системы универсальных станков и обрабатывающих центров с числовым программным управлением (ЧПУ).

Естественно, что успешное использование новых материалов, оборудования и технологий обработки конструкционных материалов в широком производстве не возможно без овладения ими персоналом, занимающимся подготовкой квалифицированных специалистов основных производственных специальностей – токаря, фрезеровщика, станочника-универсала и др. Вместе с тем современное состояние оснащения учебных центров, профессиональных лицеев и колледжей специализированным и современным оборудованием, в силу объективных причин, не позволяет овладевать этими знаниями и практическими умениями и навыками ни самим преподавателям и мастерам производственного обучения, ни студентам.

В настоящее время вопрос подготовки специалистов для машиностроительного производства, оснащенного станками с ЧПУ, объединенными в единую систему с используемыми на конкретном предприятии CAD/CAM-системами, решается, как правило, собственником, путем платной переподготовки работников в специализированных учебных центрах, количество которых ограничено. В этих условиях выпускники профессиональной школы оказываются неконкурентноспособными, прежде всего из-за того, что обучающий их персонал сам не имеет необходимой квалификации. Конечно, вопрос оснащения образовательных учреждений НПО и СПО современными станками и системами автоматизированного конструирования деталей и проектирования технологических процессов их обработки не может быть решен сразу, однако это не исключает самой возможности подготовки квалифицированного обучающего персонала для этих учреждений. Более того, в условиях современной кризисной ситуации совершенно очевидно, что такого рода подготовка должна носить опережающий характер. С этой целью в различных регионах Российской Федерации на конкурсной основе в конце 2008 - начале 2009 г. были созданы ресурсные центры, оснащенные современным машиностроительным оборудованием, станками с ЧПУ, системами CAD/CAM-проектирования, в которых прошли переподготовку и повышение квалификации специалисты профессиональной школы.

Настоящая программа создана учеными Алтайского государственного университета с участием преподавателей Центра по металлообработке БТИ Алтайского государственного технического университета и ресурсного Центра профессионально-технического училища № 8 г. Барнаула.

Программа адресована преподавателям учреждений начального профессионального и среднего профессионального образования и мастерам производственного обучения, осуществляющим подготовку квалифицированных кадров в системе СПО по специальностям:

0308 - Профессиональное обучение (по отраслям); 0309 – Технология; 1104 - Металловедение и термическая обработка металлов; 1105 - Обработка металлов давлением; 1106 - Порошковая металлургия, композиционные материалы, покрытия; 1201 - Технология машиностроения; 2101 - Автоматизация технологических процессов и производств (по отраслям);

А также рабочих в системе НПО по специальностям:

011500 – Станочник (металлообработка); 011501 – Станочник широкого профиля; 011600 – Токарь универсал; 011700 – Фрезеровщик универсал; 010700 – Наладчик станков и оборудования в механообработке; 010703 – Наладчик станков и манипуляторов с программным управлением.

Изучение курса опирается на имеющиеся у слушателей знания теории и практики таких дисциплин как технология машиностроения, процессы металлообработки, станки и оборудование машиностроительных предприятий, математики, физики и химии, информатики и программирования, материаловедения.

Цель программы – создание условий для успешного овладения слушателями современными промышленными технологиями обработки материалов и конструкционных материалов как предметом обучения студентов, методикой его организации и средством оптимизации профессиональной подготовки будущих специалистов в области современного машиностроения.

Задачи программы:

Формирование у слушателей представлений о современном состоянии технологии машиностроения и перспективами ее развития;

Ознакомление с технологическими возможностями, оборудованием и перспективными методами механической обработки конструкционных материалов;

Формирование целостных представлений об основных закономерностях формообразования, физических и химических особенностях процессов электрофизической и электрохимической обработки;

Ознакомление с основными методами и способами автоматизированного проектирования деталей и операций механической обработки при использовании станков с ЧПУ на основе CAD/CAM-систем;

Формирование практических навыков по работе на станках с устройствами цифровой индикации и с ЧПУ, написанию программ для них и изготовления простейших типов деталей;

Формирование у слушателей целостного материаловедческого подхода к процессу выбора материала изделия, с учетом его потребительских характеристик, структуры и свойств конструкционных материалов, технологий их обработки;

Ознакомление с прогрессивными и малоотходными технологиями получения материалов и готовых изделий на основе методов порошковой металлургии и СВС-технологий;

Осуществление анализа конструкторских, технологических и эксплуатационных требований к новым материалам на основе углеродных, органических и неорганических (стеклянных, кварцевых, базальтовых и др.) волокон;

Формирование знаний эксплуатационных свойств в изделиях современных волокнистых композиционных материалов различного назначения и разработанных технологий производства изделий из них;

Ознакомление с возможностями и эффективностью применения материалов в различных областях техники и технологии;

Формирование умений применять физические методы исследования материалов;

Формирование компетентностного подхода к изученному материалу, его рефлективной переработке и проектированию приобретенных знаний, умений и навыков на индивидуальную профессиональную деятельность.

Программу предваряет инвариантный блок, раскрывающий и призванный сформировать у слушателей представление о ведущих тенденциях развития отечественного профессионального образования, обеспечить понимание новых приоритетов государственной политики в этой области, знание нормативно-правовой базы современной профессиональной школы.

В блоке «Тенденции развития современного машиностроения: новые процессы, оборудование и материалы» рассматриваются основные направления и приоритеты развития машиностроения в России, нормативные акты, законодательно регулирующие процессы технического и технологического перевооружения машиностроительной отрасли, закон о техническом регулировании и качестве продукции, организация и принципы функционирования систем качества в машиностроении. Слушатели познакомятся с принципами, заложенными в основу большинства современных промышленных технологий. Будут рассмотрены фундаментальные основы, конструкторские и технологические особенности новых и прогрессивных процессов обработки металлов резанием, пластической деформацией, температурой, сваркой и воздействием высоких энергий. Материаловедение новых конструкционных материалов составит научную основу этого блока, на основании знаний о свойствах новых конструкционных материалов и их изменениях в различных технологических процессах участники программы овладеют умением выбирать оптимальную технологию их обработки для получения деталей с заданными характеристиками с минимальными экономическими и энергетическими затратами, с минимальным количеством отходов и высоким уровнем автоматизации процесса, познакомятся со свойствами большинства современных сталей и сплавов, режимами их обработки и технологией создания. В этом блоке будут представлены основные типы и марки нового технологического оборудования, станков и обрабатывающих центров с ЧПУ, особенности их конструктивного исполнения и работы. Слушатели приобретут практические навыки конструирования деталей и проектирования технологических процессов их изготовления в адаптированных CAD/CAM-системах, получат представление об основах современного процесса высокотехнологического конструирования деталей, организации и особенностях работы интерактивных конструкторских и технологических систем, научатся программировать основные типовые операции обработки деталей резанием на станках с ЧПУ. При этом участники программы будут обеспечены дидактическим материалом и программными продуктами-симуляторами для самостоятельной организации обучения студентов в среде CAD и CAM-проектирования.

В блоке «» представлены одни из самих прогрессивных технологий получения готовых изделий и материалов с минимальным количеством стадий механической и другой обработки – самораспространяющийся высокотемпературный синтез и получение изделий прессованием из порошков металлов и сплавов. Слушатели ознакомятся с теоретическими основами СВС-процессов и их практической реализацией, основными типами реакций, используемых в промышленных СВС-технологиях, организацией производства порошков сверхтвердых соединений, используемых в качестве наполнителей конструкционных металлокомпозитов, СВС-технологиями поверхностной обработки, сварки и пайки. В ходе освоения блока слушателями будут получены практические навыки расчета состава шихты для проведения СВС-процесса, порошковой смеси для получения заготовки стали или сплава определенной марки или металлокомпозиционного материала с нужными свойствами, организации технологической оснастки для прессования порошкового материала с получением готового изделия и заготовки, ознакомятся с особенностями организации СВС или порошкового процесса в конкретной технологии.

В блоке «Полимерные композиционные материалы в современном машиностроении» на основе фундаментальных знаний о составе, строении и свойствах полимерных композиционных материалов слушатели ознакомятся с принципами производства и применения стекло- и углепластиков в машиностроении. Здесь будет представлена информация об областях применения и марках конкретных полимерных композиционных материалов, возможности и перспективы замены отдельных деталей и узлов из металлов и сплавов на полимерные композиты, технологии создания этих материалов и технологии переработки композитов в готовые изделия. Слушатели получат практические навыки по проектированию композита с заданными свойствами и выбору оптимальной технологии его производства, навыки по проведению испытаний стеклопластиков и стержневых конструкций из них и корректировке технологии переработки материала.

Логическим завершением программы является блок «» в котором слушатели смогут ознакомиться с вопросами практической и методической реализации изучения отдельных вопросов программы и их применения в своей профессиональной деятельности, познакомятся с функционирующей в России сетью ресурсных центров и центров коллективного пользования, существующих как при государственных, так и при частных предприятиях, характеристиками и особенностями располагающегося в них оборудования, условиями оказания образовательных услуг этими центрами, а также вопросами стажировки и прохождения практики в этих учебно-научных подразделениях малыми группами специалистов. Будут рассмотрены методические вопросы применения информационных технологий для их использования в профессиональной деятельности слушателей курсов, проведено ознакомление с существующими свободно распространяемыми и демонстрационными версиями систем твердотельного проектирования, CAD/CAM-систем, а также различных визуализаторов и имитаторов операций механической обработки и обработки деталей на станках с ЧПУ.

На заключительном этапе курсов будет проведен круглый стол, на котором слушатели проведут презентацию и защиту своих аттестационных работ и смогут обменяться мнениями по актуальным проблемам методики преподаваемых ими профессиональных дисциплин и включения в них вопросов, рассмотренных в ходе изучения настоящей программы, планируется также и публикация его материалов.

В программе на основе синтеза теоретической и практической составляющей, с использованием современного технологического оборудования машиностроительного предприятия, компьютерных проектирующих систем и мультимедийных средств осуществляется интерактивное индивидуальное и групповое обучение слушателей современным технологиям металлообработки на станках и обрабатывающих центрах с ЧПУ, а также формирование у них компетентностного подхода в области автоматического проектирования деталей и технологических процессов в CAD/CAM-системах. В процессе обучения решаются основные технологические задачи современного машиностроения, заключающиеся в обоснованном выборе материала для изготовления конкретной детали или устройства на основе фундаментальных знаний о составе и свойствах различных материалов и возможности управления ими, выборе технологии создания такого материала, разработке оптимальной технологии его обработки с применением современных высокоавтоматизированных станков и оборудования, и проведении процесса изготовления и окончательной обработки детали с минимальным участием человека.

В ходе реализации программы слушателям будут представлены достижения ученых и преподавателей Алтайского госуниверситета и Алтайского государственного технического университета в научной и образовательной сферах в области современных технологий машиностроения и материаловедения новых материалов, станки, учебное оборудование и методические разработки Алтайского регионального ресурсного центра по металлообработке, компьютерные системы автоматизированного проектирования деталей и технологических процессов их изготовления Adem, интерактивные симуляторы Keller для высокоточных станков с ЧПУ HAAS, станки и оборудование с цифровой индикацией КГУ НПО ПУ № 8 и др., которые станут предметом их творческого осмысления и обсуждения.

Программа носит практико-ориентированный характер. В числе организационных форм обучения преобладают практические и лабораторные занятия, на которых слушатели приобретают практические навыки работы на современном станочном оборудовании, проектирования в среде CAD/CAM-систем, программирования станков с ЧПУ. В ходе реализации программы будут проведены учебные экскурсии на промышленные предприятия г. Барнаула и г. Бийска (ООО «Бийский завод стеклопластиков», ЦРТ «Алтай», ОАО НПО «Анитим»), использующие в своей деятельности современные технологии металлообработки и технологии получения и обработки полимерных композитов, а также на базе лабораторий центра материаловедения и центра нанонаук, нанотехнологий и наноматериалов Алтайского государственного университета.

Обучение слушателей по программе «Материаловедение и современные технологии обработки конструкционных материалов» должно обеспечить:

– ориентацию слушателей в приоритетных направлениях развития современного профессионального образования и овладение навыками применения личностно-ориентированных технологий в своей профессиональной деятельности;

– ознакомление с современными технологиями и оборудованием машиностроительных предприятий;

– получение знаний и практических навыков для работы на станках с УЦИ и ЧПУ, проектированию деталей и технологических процессов обработки в среде CAD/CAM-систем и применения их в практической деятельности;

– овладение основами материаловедения новых конструкционных материалов, методологией их выбора для изготовления конкретных деталей машин и механизмов в рамках оптимальной технологии.

А.В. Ишков, д-р техн. наук, проф. (руководитель); В.А. Плотников, д-р физ.-мат. наук, проф.; О.В. Старцев, д-р техн. наук, проф.; В.Н. Беляев, канд. техн. наук, доц.

Сроки реализации программы «МАТЕРИАЛОВЕДЕНИЕ И СОВРЕМЕННЫЕ ТЕХНОЛОГИИ ОБРАБОТКИ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ»: 15 марта – 26 марта 2010 г.

«УТВЕРЖДАЮ»

Первый проректор по учебной работе

профессор Г.В. Лаврентьев

«______»_____________ 2010 г.

^ УЧЕБНЫЙ ПЛАН

Материаловедение и современные технологии обработки конструкционных материалов

Цель: повышение квалификации

^ Срок обучения: 10-12 дней

Форма обучения: очная


п/п

Всего
часов

В том числе:

Формы
контроля

семинары, практические

лабораторные

Процессы модернизации в профессиональном образовании современной России

Тенденции развития современного машиностроения: новые процессы, оборудование и материалы в деятельности будущего специалиста

Промышленные СВС-технологии и порошковая металлургия

защита проектных заданий

Современные технологии машиностроения: проблемы изучения в образовательном процессе профессиональной школы

круглый стол

Директор ЦППКП О.П. Морозова

^ ГОУ ВПО «АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

«УТВЕРЖДАЮ»

Первый проректор по учебной работе

профессор Г.В.Лаврентьев

«______»_____________ 2010 г.

^ УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

Материаловедение и современные технологии обработки конструкционных материалов

Цель: повышение квалификации

^ Срок обучения: 10-12 дней

Форма обучения: очная

Режим занятий: от 6 до 8 часов в день

Наименование разделов, дисциплин, тем

Всего
часов

В том числе:

контроля

семинары,
практические

лабораторные

Процессы модернизации в профессиональном образовании современной России

Приоритеты государственной образовательной политики в современных условиях

Правовые акты об образовании: федеральные и региональные проблемы реализации

^ Тенденции развития современного машиностроения: новые процессы, оборудование и материалы в деятельности будущего специалиста

Современное состояние и перспективы развития технологии машиностроения

Оборудование и технологии для механической, электро- и физико-химической обработки плоских и объемных деталей

Общие принципы повышения эффективности и автоматизации металлообработки

Обеспечение качества и сертификация продукции, процессов и технологий машиностроения

Плазменная и лазерная резка листовых конструкционных материалов

Современные методы непрерывной обработки металлов пластической деформацией

Универсальные станки с цифровой индикацией

Обрабатывающие центры HAAS

Разработка технологических процессов обработки металлов с использованием CAD/CAM-систем

Создание управляющих программ обработки деталей на станках с ЧПУ

Изготовление детали на станке с ЧПУ

Промышленные СВС-технологии и порошковая металлургия

Порошковые материалы и изделия из них

Взаимодействия в системах порошковых и порошок-газовых смесей

Синтезы в порошковых смесях, разбавленных инертной компонентой

Синтезы интерметаллических и металлокерамических конструкционных материалов

Полимерные композиционные материалы (ПКМ) в современном машиностроении

защита проектных заданий

Роль ПКМ в современном машиностроении

Структура и свойства ПКМ

Технология, оборудование и автоматизация процессов производства ПКМ

Механическая обработка деталей из ПКМ

Методы и приборы для определения комплекса деформационно-прочностных свойств ПКМ

Работоспособность ПКМ в реальных условиях эксплуатации

Современные технологии машиностроения: проблемы изучения в образовательном процессе профессиональной школы

круглый стол

Использование оборудования ресурсных центров и центров коллективного пользования

Методические аспекты использования IT-технологий в учебном процессе подготовки специалистов НПО и СПО

Директор ЦППКП О.П. Морозова

^ II. СПИСОК ЛИТЕРАТУРЫ

Бушуев Ю.Г, Персин М.И., Соколов В.А. Углерод-углеродные композиционные материалы: Справочник. - М.: Изд-во Металлургия, 1994.

Качество машин: Справочник в 2 т. / Под ред. А.Г. Суслова. - М.: Изд-во Машиностроение, 1995.

Композиционные материалы: Справочник. / Под общей ред. В.В.Васильева и Ю.М. Тарнопольского. –М.: Изд-во Машиностроение, 1990.

Компьютерно-интегрированные производства и CALS-технологии в машиностроении / Т.А. Альперович, В.В.Барабанов, А.Н.Давыдов и др. - М.: Изд-во ГУП ВИМИ, 1999.

Котлер Ф. Основы маркетинга. / Пер. с англ. - М.: Изд-во Бизнес-книга, 1995.

Краткий справочник металлиста. / Под ред. А. Е Древаль, Е.А. Скороходова. – М.: Изд-во Машиностроение, 2005.

Лахтин Ю.М., Леонтьева В.П. Материаловедение.–М.: Изд-во Машиностроение, 1990.

Либенсон Г.А. Производство порошковых изделий. Учебник для техникумов. - М.: Изд-во Металлургия, 1990.

Ловыгин А. Современный станок с ЧПУ и CAD/CAM система. - М.: Изд-во ДМК, 2008.

Машиностроение: Энциклопедия. Технология изготовления деталей машин. / Под ред. А.Г. Суслова. - М.: Изд-во Машиностроение, 1999.

Мержанов А.Г. Самораспространяющийся высокотемпературный синтез. Физическая химия: Современные проблемы. –М.: Изд-во Химия, 1983.

Панов В.С. Технология и свойства спеченных твердых сплавов и изделий из них. Учебное пособие для вузов. - М.: Изд-во МИСИC, 2001.

Перепечко И.И. Введение в физику полимеров. -М.: Изд-во Химия, 1978.

Раковский B.C., Саклинский В.В. Порошковая металлургия в машиностроении. –М.: Изд-во Машиностроение, 1973.

Смазочно-охлаждающие технологические средства и их применение при обработке резанием: Справочник/ Под общ. ред. Л.В. Худобина. - М.: Изд-во Машиностроение, 2006.

Справочник по композиционным материалам. В 2 т. / Под ред. Дж. Любина. Пер. с англ. -М.: Изд-во Машиностроение, 1988.

Схиртладзе А.Г. Работа оператора на станках с программным управлением: Учебное пособие для проф. учеб. заведений. - М.: Изд-во Академия, 1998.

Теория резания. Учебник. / П.И. Ящерицын и др. - М.: Изд-во Новое знание, 2006.

Технология машиностроения: В 2 т. Учебник для вузов / В.М. Бурцев, А.С. Васильев, А.М. Дальский и др. – М.: Изд-во МГТУ им. Н.Э. Баумана, 1997.

Токарный станок – руководство оператора (русск.). Январь 2007: Методическое руководство. – Окснард – Калифорния: Haas Automation Inc., 2007.

Фельдштейн Е.Э. Обработка деталей на станках с ЧПУ. Учебное пособие. - М.: Изд-во Новое знание, 2008.

Фотеев Н.К. Технология электроэрозионной обработки. - М.: Изд-во Машиностроение, 1980.

Фрезерный станок – руководство оператора (русск.). Январь 2007: Методическое руководство. – Окснард – Калифорния: Haas Automation Inc., 2007.

Химия синтеза сжиганием. / Ред. М. Коидзуми. Пер. с япоск. –М.: Изд-во Мир, 1998.

Шишмарев В.Ю. Автоматизация технологических процессов. М.: Изд-во Academia, 2009.

^ III. ТЕМАТИКА ИТОГОВЫХ АТТЕСТАЦИОННЫХ РАБОТ

Современное состояние машиностроения в России и странах СНГ

Новые и малоотходные технологии в машиностроении

Американские станкостроительные компании

«Умные» материалы

Есть ли еще резервы у традиционных материалов?

Машиностроение в современных рыночных условиях: «за» и «против» САПР

Японские станкостроительные компании

Рынок металлообрабатывающих станков в России и за рубежом

Современные технологии металлообработки

Китайские станкостроительные компании

Машиностроительные технологии будущего

Два альтернативных пути металлообработки: съем и наращивание металла

Определение оптимальных параметров резания

Быстрорежущие стали и инструмент

Наноперемещения: их реализация и использование в современных станках

Устройство цифровой индикации или система ЧПУ?

Многокоординатные центры с ЧПУ

Обработка типовых деталей на станках с ЧПУ

Болгарские станкостроительные компании

Станкостроение в современной России

Электроэрозионная обработка

Плазменная и лазерная резка

Гидроабразивная обработка: материалы, особенности и области применения

Новые стали и сплавы для машиностроения

Малоотходные технологии обработки металлов

Технологии пластической деформации и обработка металлов

Керамика и металлокерамика в современном машиностроении

Системы качества на японских машиностроительных предприятиях

Сертификация систем менеджмента качества специализированными кампаниями: шаг

Химические и электрические способы обработки материалов

При обработке металлов резанием получение деталей необходимых размеров достигается снятием стружки с поверхности обрабатываемой заготовки. Стружка, таким образом, является одним из наиболее распространенных отходов в металлообработке, объем которого составляет примерно 8 млн. т. в год. При этом, по меньшей мере 2 млн. т. - это отходы переработки высоколегированных и других особо ценных сталей. При обработке на современных металлорежущих станках в стружку зачастую идет до 30 - 40 % металла от общей массы заготовки.

К новым методам обработки металлов относятся химические, электрические, плазменные, лазерные, ультразвуковые, а также гидропластическая обработка металлов.

При химической обработке используется химическая энергия. Снятие определенного слоя металла осуществляется в химически активной среде (химическое фрезерование). Оно заключается в регулируемом по времени и месту растворении металла в ваннах. Поверхности, не подлежащие обработке, защищают химически стойкими покрытиями (лаки, краски, светочувствительные эмульсии и др.). Постоянство скорости травления поддерживается за счет неизменной концентрации раствора. Химическими методами обработки получают местные утончения и щели; «вафельные» поверхности; обрабатывают труднодоступные поверхности.

При электрическом методе электрическая энергия преобразуется в тепловую, химическую и другие виды энергии, участвующие непосредственно в процессе удаления заданного слоя. В соответствии с этим электрические методы обработки разделяют на электрохимические, электроэрозионные, электротермические и электромеханические.

Электрохимическая обработка основана на законах анодного растворения металла при электролизе. При прохождении постоянного электрического тока через электролит на поверхности заготовки, включенной в электрическую цепь и являющейся анодом, происходят химические реакции и образуются соединения, которые переходят в раствор или легко удаляются механическим способом. Электрохимическую обработку применяют при полировании, размерной обработке, хонинговании, шлифовании, очистке металлов от оксидов, ржавчины и т.д.

Анодно-механическая обработка сочетает электротермические и электромеханические процессы и занимает промежуточное место между электрохимическим и электроэрозионным методами. Обрабатываемую заготовку подключают к аноду, а инструмент - к катоду. В качестве инструмента используют металлические диски, цилиндры, ленты, проволоку. Обработку ведут в среде электролита. Заготовке и инструменту задают такие же движения, как при обычных методах механической обработки. Электролит подают в зону обработки через сопло.

При пропускании через раствор электролита постоянного электрического тока происходит процесс анодного растворения металла, как при электрохимической обработке. При соприкосновении инструмента-катода с микронеровностями обрабатываемой поверхности заготовки-анода происходит процесс электроэрозии, присущий электроискровой обработке.

Продукты электроэрозии и анодного растворения удаляются из зоны обработки при движении инструмента и заготовки.

Электроэрозионная обработка основана на законах эрозии (разрушения) электродов из токопроводящих материалов при пропускании между ними импульсного электрического тока. Она применяется для прошивания полостей и отверстий любой формы, разрезания, шлифования, гравирования, затачивания и упрочнения инструмента. В зависимости от параметров и вида импульсов, применяемых для их получения генераторов, электроэрозионная обработка разделяется на электроискровую, электроимпульсную и электроконтактную.

При определенном значении разности потенциалов на электродах, одним из которых является обрабатываемая заготовка (анод), а другим - инструмент (катод), между электродами образуется канал проводимости, по которому проходит импульсный искровой (электроискровая обработка) или дуговой (электроимпульсная обработка) разряд. В результате температура на поверхности обрабатываемой заготовки возрастает. При этой температуре мгновенно оплавляется и испаряется элементарный объем металла и на обрабатываемой поверхности заготовки образуется лунка. Удаленный металл застывает в виде мелких гранул. Следующий импульс тока пробивает межэлектродный промежуток там, где расстояние между электродами наименьшее. При непрерывном подведении к электродам импульсного тока процесс их эрозии продолжается до тех пор, пока не будет удален весь металл, находящийся между электродами на расстоянии, на котором возможен электрический пробой (0,01 - 0,05 мм) при заданном напряжении. Для продолжения процесса необходимо сблизить электроды до указанного расстояния. Электроды сближаются автоматически с помощью следящего устройства того или иного типа.

Электроискровую обработку применяют для изготовления штампов, пресс-форм, фильер, режущего инструмента, деталей двигателей внутреннего сгорания, сеток и для упрочнения поверхностного слоя деталей.

Электроконтактная обработка основана на локальном нагреве заготовки в месте контакта с электродом-инструментом и удалении размягченного или расплавленного металла из зоны обработки механическим способом (при относительном перемещении заготовки и инструмента).

Электромеханическая обработка связана преимущественно с механическим действием электрического тока. На этом основана, например, электрогидравлическая обработка, использующая действие ударных волн, возникающих в результате импульсного пробоя жидкой среды.

Ультразвуковая обработка металлов - разновидность механической обработки - основана на разрушении обрабатываемого материала абразивными зернами под ударами инструмента, колеблющегося с ультразвуковой частотой. Источником энергии служат электрозвуковые генераторы тока с частотой 16 - 30 кГц. Рабочий инструмент - пуансон - закрепляют на волноводе генератора тока. Под пуансоном устанавливают заготовку, и в зону обработки поступает суспензия, состоящая из воды и абразивного материала. Процесс обработки заключается в том, что инструмент, колеблющийся с ультразвуковой частотой, ударяет по зернам абразива, лежащим на обрабатываемой поверхности, которые скалывают частицы материала заготовки.

Обработка металла берет начало в доисторический период, когда древние люди научились отливать из меди орудья труда и наконечники стрел. Так началась эпоха металла, ископаемого которое и по сей день остается актуальным. Сегодня новые технологии обработки металла позволяют создавать различные сплавы, изменять технологические свойства, получать сложные формы и конструкции.

В наши дни самым востребованным материалом является железо. На его основе отливают множество сплавов с различным содержанием углерода и легирующих добавок. Кроме стали, в промышленности широко применяют цветные металлы, которые также используются в широком разнообразии сплавов. Каждый сплав характеризуется не только эксплуатационными свойствами, но и технологическими, что и определяет способ его обработки:

  • литье;
  • термическая обработка;
  • механическая обработка резанием;
  • холодная или горячая деформация;
  • сваривание.

Литье – это самый первый способ, который стал применять человек. Первой была медь, а выплавлять железо из руды в сыродутной печи начали в XII веке до н. э. Современные технологии позволяют получать различные сплавы, рафинировать и раскислять металл. Например, раскисление меди фосфором делает ее более пластичной, а переплавка в инертной среде повышает электропроводимость.

Последними достижениями в металлургии стали появление новых сплавов. Разработаны новые, более качественные марки нержавеющей высоколегированной стали аустенитного и ферритного класса. Появились более долговечные и устойчивые к коррозии жаростойкие, жаропрочные, кислотостойкие и пищевые стали AISI 300-ой и 400-ой серии. Некоторые сплавы были усовершенствованны и в их состав в качестве стабилизатора введен титан.

В цветной металлургии также были получены сплавы с оптимальными характеристиками для той или иной отрасли. Вторичный алюминий общего назначения 1105, алюминий высокой чистоты А0 для пищевой промышленности, авиалиний, среди которого наиболее востребованы в авиационной промышленности марки АВ, АД31 и АД 35, устойчивый к морской воде корабельный алюминий 1561 и АМг5, свариваемые алюминиевые сплавы легированные магнием или марганцем, жаропрочные алюминии, такие как АК4. Широкий спектр сплавов на основе меди – бронза и латунь также отличаются характерными особенностями и удовлетворяют все потребности народного хозяйства.

Формирование технологических характеристик сплава

На современном рынке металлопроката представлены различные полуфабрикатные изделия из различных сплавов стали и цветмета. При этом одна и та же марка может предлагаться в различном технологическом состоянии.

Термическая обработка

Посредством термической обработки сплав может доводиться до максимально жесткого и прочного состояния или наоборот до более пластичного. Твердое состояние «Т» ‒ термически закаленный, достигается нагревом до определенной температуры и последующим резким охлаждением в воде или масле. Мягкое состояние «М» ‒ термически отожженный, когда после нагрева остывание производится медленно. Для алюминия также существуют термические методы естественного и искусственного старения.

Для каждой марки определены свои режимы термообработки, изучены влияния напряжения на коррозионные свойства, что также позволяет формировать технологические процессы.

Упрочнение давлением

Этот способ был известен еще нашим предкам. Кузнецы увеличивали плотность материала, куя его на холодную. Это называлось отклепать косу или клинок. Сегодня этот процесс получил название ‒ нагартовка, которая в маркировке проката обозначается «Н». Современные технологии позволяют получать механическое упрочнение любой степени с высокой точностью. Например, «Н2» ‒ полунагартовка, «Н3» ‒ треть нагартовка и т. д.

Метод заключается в максимально возможном механическом обжатии с последующим частичным отожжением до необходимого технологического состояния.

Химическая обработка

Травление поверхности химическими реактивами. Способ применяется для изменения зернистости поверхности и придания ей матового или блестящего оттенка. Обычно методика используется как доработка поверхности проката, произведенного горячей деформацией.

Защита от коррозии

Кроме покрытия защитными лаками или композита с пластиком, в современной металлургии применяют 4 основных способа:

  • анодирование – анодная поляризация в растворе электролита с целью получения оксидной пленки, защищающей от коррозии;
  • пассивирование – защитный пассивный слой появляется вследствие воздействия окисляющих агентов;
  • гальванический метод покрытия одного металла другим. Процесс достигается за счёт электролиза. В частности, покрытие стали никелем, оловом, цинком и другими металлами, устойчивыми к коррозии;
  • плакирование – применяется для защиты алюминиевых сплавов, недостаточно устойчивых к коррозии. Методика заключается в механическом покрытии слоем чистого алюминия (прокатом, волочением).

Технология биметаллов

Метод основан на сращивании различных металлов посредством возникновения между ними диффузионной связи. Его суть состоит в необходимости получения материала, обладающего качествами двух элементов. Например, высоковольтные провода должны быть достаточно прочными и характеризоваться высокой электропроводимостью. Для этого сращивают сталь и алюминий. Стальная сердцевина провода принимает на себя механическую нагрузку, а алюминиевая оболочка становится превосходным проводником. В термометрической технике используют биметаллы с различным коэффициентом термического расширения.

В России биметаллы также используются для чеканки монет.

Механическая обработка

Это неотъемлемая часть любого металлообрабатывающего производства, которая выполняется режущим инструментом: резка, рубка, фрезеровка, сверление и др. На современном производстве применяются высокоточные и высокопроизводительные станки и комплексы с ЧПУ. При этом до недавнего времени новые технологии в обработке металлов были недоступны на строительных площадках при сборке металлоконструкций. Механизм выполнения производства работ по месту монтажа предусматривал применение ручных механических и электрических инструментов.

Сегодня разработаны специальные магнитные станки с программным управлением. Оборудование позволяет выполнять сверление на высоте под любым углом. Устройство полностью контролирует процесс, исключая неточности и ошибки, а также позволяет высверливать отверстия большого диаметра, что раннее на высоте было практически невозможно.

Обработка давлением

По способу обработка давлением различается на горячую и холодную деформацию, а по виду ‒ на штамповку, ковку, прокат, вытяжку и высадку. Здесь также внедрена механизация и компьютеризация производства. Это значительно снижает себестоимость продукта, в то же время повышает качество и производительность. Недавним достижением в области холодной деформации стала холодная ковка. Специальное оборудование позволяет с минимальными затратами производить высокохудожественные и одновременно функциональные элементы декора.

Сваривание

Среди ставших уже традиционными методами можно выделить электродуговую, аргонодуговую, точечную, роликовую и газовую сварку. Разделить сварочный процесс можно также на ручной, автоматический и полуавтоматический. При этом для высокоточных процессов сварки применяются новые методы.

Благодаря применению сфокусированного лазера появилась возможность производства сварочных работ на мелких деталях в радиоэлектронике или присоединение твердосплавных режущих элементов к различным фрезам.

В недалеком прошлом технология обходилась достаточно дорого, но с применением современного оборудования, в котором импульсный лазер заменили газовым, методика стала более доступной. Оборудование для лазерной сварки или резки также оснащается программным управлением, а при необходимости производится в вакууме или инертной среде

Плазменная резка

Если по сравнению с лазерной резкой плазменная отличается большей толщиной реза, то по экономичности в разы её превосходит. Это самый распространенный на сегодня метод серийного производства с высокой точностью повторения. Методика заключается в выдувании электрической дуги высокоскоростной струей газа. Уже существуют и ручные плазменные резаки, которые являются превосходящей альтернативой газовой резке.

Новейшие разработки в производстве сложных и малоразмерных деталей

Какая бы совершенная не была механическая обработка у нее есть свой предел по минимальным габаритам производимой детали. В современной радиоэлектронике используются многослойные платы, содержащие сотни микросхем, каждая из которых содержит тысячи микроскопических деталей. Производство таких деталей может показаться волшебством, но это возможно.

Электроэрозионный метод обработки

Технология основана на разрушении и выпаривании микроскопических слоев металла электрической искрой.

Процесс выполняется на роботизированном оборудовании и контролируется компьютером.

Ультразвуковой метод обработки

Этот способ похож на предыдущий, но в нем разрушение материала происходит под воздействием высокочастотных механических колебаний. В основном ультразвуковое оборудование применяют для разделительных процессов. При этом ультразвук используется и в других областях металлообработки ‒ в очистке металла, изготовлении ферритовых матриц и др.

Нанотехнологии

Метод фемтосекундной лазерной абляции остается актуальным способом получения в металле наноотверстий. При этом появляются новые, менее затратные и более эффективные технологии. Изготовление металлических наномембран путем пробивания отверстий методом ионного травления. Отверстия получаются диаметром 28,98 нм с плотностью 23,6х10 6 на мм 2 .

К тому же ученые из США разрабатывают новый, более прогрессивный способ получение металлического массива наноотверстий методом испарения металла по шаблону из кремния. В наши дни свойства таких мембран изучаются с перспективой применения в солнечных батареях.

Металлообрабатывающее оборудование на сегодняшний день нашло широкое применение в различных промышленных отраслях: железнодорожной отрасли, энергетике, авиа и судостроении, строительстве, машиностроении и так далее.

Выбор станков напрямую зависит от объемов производства (механические, ручные, с ЧПУ, автоматические и так далее), необходимого качества детали и вида обработки.

Токарно-фрезерная обработка

Механическая обработка используется для того, чтобы производить новые поверхности. Работа состоит в разрушении слоя определенной области: при этом режущий инструмент осуществляет контроль степени деформации. Основным оборудованием для механической обработки металлов являются токарные и фрезерные станки, а также универсальные токарно-фрезерные обрабатывающие центры.

Токарная обработка - это процесс резания металла, осуществляемый при линейной подаче режущего инструментом при одновременном вращении заготовки.

Точение осуществляется срезанием с поверхности заготовки определенного слоя металла с помощью резцов, сверл или других режущих инструментов.

Главным движением при точении является вращение заготовки.

Движением подачи при точении является поступательное перемещение резца, которое может совершаться вдоль или поперек изделия, а также под постоянным или изменяющимся углом к оси вращения изделия.

Фрезерная обработка - это процесс резания металла, осуществляемый вращающимся режущим инструментом при одновременной линейной подаче заготовки.

Материал с заготовки снимают на определенную глубину фрезой, работающей либо торцовой стороной, либо периферией.

Главным движением при фрезеровании является вращение фрезы.

Движением подачи при фрезеровании является поступательное перемещение обрабатываемой детали.

Токарно-фрезерная обработка металлов выполняется с помощью универсальных обрабатывающих центров с числовым программным управлением (ЧПУ), позволяющих выполнять сложнейшую высокоточную обработку без учета человеческого фактора. ЧПУ предполагает, что каждым этапом выполняемых работ управляет компьютер, которому задается определенная программа. Обработка детали на станке с ЧПУ обеспечивает максимально точные размеры готового изделия, т.к. все операции выполняются с одной установки обрабатываемой заготовки.

Электроэрозионная обработка

Суть метода электроэрозионной обработки (резки) заключается в полезном использовании электрического пробоя при обработке поверхности.

При сближении электродов, находящихся под током, происходит разряд, разрушительное воздействие которого проявляется на аноде, которым служит обрабатываемый материал.

Межэлектродное пространство заполняется диэлектриком (керосином, дистиллированной водой или специальной рабочей жидкостью), в котором разрушающее воздействие на анод значительно более действенно, чем в воздухе. Диэлектрик также играет роль катализатора процесса распада материала, т. к. он - при разряде в зоне эрозии - превращается в пар. При этом происходит «микровзрыв» пара, который также разрушает материал.

Важнейшим преимуществом проволочно-вырезных станков является малый радиус эффективного сечения инструмента (проволоки), а также возможность точного пространственного ориентирования режущего инструмента. В силу этого возникают уникальные возможности для изготовления точных деталей в широком диапазоне размеров с достаточно сложной геометрией.

Для некоторых изготавливаемых деталей применение электроэрозионной обработки является предпочтительным, в сравнении с другими видами обработки.

Электроэрозионные проволочно-вырезные станки позволяет рационально осуществить операции по:

    изготовлению деталей со сложной пространственной формой и повышенными требованиями к точности и чистоте обработки, в том числе деталей из металла с повышенной твердостью и хрупкостью;

    изготовлению фасонных резцов, матриц, пуансонов, вырубных штампов, лекал, копиров и сложных пресс-форм в инструментальном производстве.

Гидроабразивная обработка

Гидроабразивная обработка металла – это один из наиболее высокотехнологических процессов, обладающий высокими показателями точности и экологичности производства. Процесс гидроабразивной резки заключается в обработке заготовки тонкой струей воды под большим давлением с добавлением абразивного материала (например, мельчайший кварцевый песок). Технологический процесс гидроабразивной резки является очень точным и качественным способом обработки металла.

В процессе гидроабразивной обработки вода смешивается в специальной камере с абразивом и проходит через очень узкое сопло режущей головки под высоким давлением (до 4000 бар). Гидроабразивная смесь выходит из режущей головки со скоростью, превышающей скорость звука (часто более чем в 3 раза).

Наиболее производительное и универсальное оборудование – это системы консольного и портального типа. Такое оборудование идеально подходит, например, для аэрокосмической и автомобильной промышленности; оно может широко использоваться в любых других отраслях.

Гидроабразивный раскрой является безопасным способом обработки. Резка водой не производит вредных выделений и (за счет возможности получения узкого реза) экономично расходует обрабатываемый материал. Hет зон термического воздействия, закаливания. Небольшая механическая нагрузка на материал облегчает обработку сложных деталей, особенно с тонкими стенками.

Одним из важнейших преимуществ водоструйной технологии является возможность обработки практически любых материалов. Данное свойство делает технологию гидроабразивной резки незаменимой в ряде технологических производств и делает ее применимой практически в каждом производстве.

Лазерная обработка

Лазерная обработка материалов включает в себя резку и раскрой листа, сварку, закалку, наплавку, гравировку, маркировку и другие технологические операции.

Использование лазерной технологии обработки материалов обеспечивает высокую производительность и точность, экономит энергию и материалы, позволяет реализовать принципиально новые технологические решения и использовать труднообрабатываемые материалы, повышает экологическую безопасность предприятия.

Лазерная резка осуществляется путём сквозного прожига листовых металлов лучом лазера. В процессе резки, под воздействием лазерного луча материал разрезаемого участка плавится, возгорается, испаряется или выдувается струей газа. При этом можно получить узкие резы с минимальной зоной термического влияния.

Такая технология имеет ряд очевидных преимуществ перед многими другими способами раскроя:

    отсутствие механического контакта позволяет обрабатывать хрупкие и деформирующиеся материалы;

    обработке поддаются материалы из твердых сплавов;

    возможна высокоскоростная резка тонколистовой стали;

Для резки металлов применяют технологические установки на основе твердотельных, волоконных лазеров и газовых CO 2 -лазеров, работающих как в непрерывном, так и в импульсно-периодическом режимах излучения. Сфокусированный лазерный луч, обычно управляемый компьютером, обеспечивает высокую концентрацию энергии и позволяет разрезать практически любые материалы независимо от их теплофизических свойств.

Благодаря высокой мощности лазерного излучения обеспечивается высокая производительность процесса в сочетании с высоким качеством поверхностей реза. Легкое и сравнительно простое управление лазерным излучением позволяет осуществлять лазерную резку по сложному контуру плоских и объемных деталей и заготовок с высокой степенью автоматизации процесса.